Integrating Space With Place in Health Research: A Multilevel Spatial Investigation Using Child Mortality in 1880 Newark, New Jersey

Abstract

Research on neighborhoods and health increasingly acknowledges the need to conceptualize, measure, and model spatial features of social and physical environments. When ignoring underlying spatial dynamics, we run the risk of biased statistical inference and misleading results. In this article, we propose an integrated multilevel spatial approach for Poisson models of discrete responses. In an empirical example of child mortality in 1880 Newark, New Jersey, we compare this multilevel spatial approach with the more typical aspatial multilevel approach. Results indicate that spatially defined egocentric neighborhoods, or distance-based measures, outperform administrative areal units, such as census units. In addition, although results do not vary by specific definitions of egocentric neighborhoods, they are sensitive to geographic scale and modeling strategy. Overall, our findings confirm that adopting a spatial multilevel approach enhances our ability to disentangle the effect of space from that of place, pointing to the need for more careful spatial thinking in population research on neighborhoods and health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Acevedo-Garcia, D. (2001). Zip code-level risk factors for tuberculosis: Neighborhood environment and residential segregation in New Jersey, 1985–1992. American Journal of Public Health, 91, 734–741.

    Article  Google Scholar 

  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  3. Anderson, E. (1992). Streetwise: Race, class, and changes in an urban community. Chicago, IL: University of Chicago Press.

    Google Scholar 

  4. Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht, The Netherlands: Kluwer Academic.

    Book  Google Scholar 

  5. Arcaya, M., Brewster, M., Zigler, C. M., & Subramanian, S. V. (2012). Area variations in health: A spatial multilevel modeling approach. Health & Place, 18, 824–831.

    Article  Google Scholar 

  6. Banerjee, S., Gelfand, A. E., & Carlin, B. P. (2004). Hierarchical modeling and analysis for spatial data. Boca Raton, FL: Chapman & Hall/CRC Press.

    Google Scholar 

  7. Boyle, M. H., & Willms, J. D. (1999). Place effects for areas defined by administrative boundaries. American Journal of Epidemiology, 149, 577–585.

    Article  Google Scholar 

  8. Browne, W., & Goldstein, H. (2010). MCMC sampling for a multilevel model with nonindependent residuals within and between cluster units. Journal of Educational and Behavioral Statistics, 35, 453–473.

    Article  Google Scholar 

  9. Chaix, B. (2009). Geographic life environments and coronary heart disease: A literature review, theoretical contributions, methodological updates, and a research agenda. Annual Review of Public Health, 30, 81–105.

    Article  Google Scholar 

  10. Chaix, B., Merlo, J., & Chauvin, P. (2005a). Comparison of a spatial approach with the multilevel approach for investigating place effects on health: The example of healthcare utilization in France. Journal of Epidemiology & Community Health, 59, 517–526.

    Article  Google Scholar 

  11. Chaix, B., Merlo, J., Evans, D., Leal, C., & Havard, S. (2009). Neighbourhoods in eco-epidemiologic research: Delimiting personal exposure areas. A response to Riva, Gauvin, Apparicio and Brodeur. Social Science & Medicine, 69, 1306–1310.

    Article  Google Scholar 

  12. Chaix, B., Merlo, J., Subramanian, S. V., Lynch, J., & Chauvin, P. (2005b). Comparison of a spatial approach with the multilevel analytical approach in neighborhood studies: The case of mental and behavioral disorders due to psychoactive substance use in Malmö, Sweden, 2001. American Journal of Epidemiology, 162, 171–182.

    Article  Google Scholar 

  13. Cliff, A., & Haggett, P. (2004). Time, travel and infection. British Medical Bulletin, 69, 87–99.

    Article  Google Scholar 

  14. Coggon, D., Barker, D. J. P., Inskip, H., & Wield, G. (1993). Housing in early life and later mortality. Journal of Epidemiology & Community Health, 47, 345–348.

    Article  Google Scholar 

  15. Collins, C., & Williams, D. R. (1999). Segregation and mortality: The deadly effects of racism? Sociological Forum, 14, 495–523.

    Article  Google Scholar 

  16. Crowder, K., & South, S. J. (2008). Spatial dynamics of white flight: The effects of local and extralocal racial conditions on neighborhood out-migration. American Sociological Review, 73, 792–812.

    Article  Google Scholar 

  17. Cunningham, J. T. (1966). Newark. Newark: New Jersey Historical Society.

    Google Scholar 

  18. DeBats, D. A. (2011). Political consequences of spatial organization: Contrasting patterns in two nineteenth-century small cities. Social Science History, 35, 505–541.

    Article  Google Scholar 

  19. Dietz, R. D. (2002). The estimation of neighborhood effects in the social sciences: An interdisciplinary approach. Social Science Research, 31, 539–575.

    Article  Google Scholar 

  20. Diez-Roux, A. V. (2000). Multilevel analysis in public health research. Annual Review of Public Health, 21, 171–192.

    Article  Google Scholar 

  21. Diggle, P. J., Tawn, J. A., & Moyeed, R. A. (1998). Model-based geostatistics. Applied Statistics, 47, 299–350.

    Google Scholar 

  22. Downey, L. (2003). Spatial measurement, geography, and urban racial inequality. Social Forces, 81, 937–952.

    Article  Google Scholar 

  23. Elliott, P., & Wartenberg, D. (2004). Spatial epidemiology: Current approaches and future challenges. Environmental Health Perspectives, 112, 998–1006.

    Article  Google Scholar 

  24. Fang, J., Madhavan, S., Bosworth, W., & Alderman, M. H. (1998). Residential segregation and mortality in New York City. Social Science & Medicine, 47, 469–474.

    Article  Google Scholar 

  25. Flowerdew, R., Manley, D. J., & Sabel, C. E. (2008). Neighbourhood effects on health: Does it matter where you draw the boundaries? Social Science & Medicine, 66, 1241–1255.

    Article  Google Scholar 

  26. Frank, L. D., Andresen, M. A., & Schmid, T. L. (2004). Obesity relationships with community design, physical activity, and time spent in cars. American Journal of Preventive Medicine, 27(2), 87–96.

    Article  Google Scholar 

  27. Frankenberg, E., McKee, D., & Thomas, D. (2005). Health consequences of forest fires in Indonesia. Demography, 42, 109–129.

    Article  Google Scholar 

  28. Galishoff, S. (1988). Newark: The nation’s unhealthiest city, 1832–1895. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  29. Gatrell, A. C., Bailey, T. C., Diggle, P. J., & Rowlingson, B. S. (1996). Spatial point pattern analysis and its application in geographical epidemiology. Transactions of the Institute of British Geographers, 21, 256–274.

    Article  Google Scholar 

  30. Gelfand, A. E., Latimer, A., Wu, S., & Silander, J. A., Jr. (2006). Building statistical models to analyze species distributions. In J. S. Clark & A. E. Gelfand (Eds.), Hierarchial modelling for the environmental sciences: Statistical methods and applications (pp. 77–97). New York, NY: Oxford University Press.

    Google Scholar 

  31. Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. New York, NY: Cambridge University Press.

    Google Scholar 

  32. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.

    Article  Google Scholar 

  33. Grannis, R. (1998). The importance of trivial streets: Residential streets and residential segregation. American Journal of Sociology, 103, 1530–1564.

    Article  Google Scholar 

  34. Guo, J. Y., & Bhat, C. R. (2007). Operationalizing the concept of neighborhood: Application to residential location choice analysis. Journal of Transport Geography, 15, 31–45.

    Article  Google Scholar 

  35. Hays, J. N. (2005). Epidemics and pandemics: Their impacts on human history. Santa Barbara, CA: ABC-CLIO, Inc.

    Google Scholar 

  36. Hearst, M. O., Oakes, J. M., & Johnson, P. J. (2008). The effect of racial residential segregation on black infant mortality. American Journal of Epidemiology, 168, 1247–1254.

    Article  Google Scholar 

  37. Holford, T. R. (1980). The analysis of rates and of survivorship using log-linear models. Biometrics, 36, 299–305.

    Article  Google Scholar 

  38. Jacquez, G. M., & Greiling, D. A. (2003). Local clustering in breast, lung and colorectal cancer in Long Island, New York. International Journal of Health Geographics, 2, 3.

    Article  Google Scholar 

  39. Kaplan, D. H., & Holloway, S. R. (2001). Scaling ethnic segregation: Causal processes and contingent outcomes in Chinese residential patterns. GeoJournal, 53, 59–70.

    Article  Google Scholar 

  40. Kramer, M. R., Cooper, H. L., Drews-Botsch, C. D., Waller, L. A., & Hogue, C. R. (2010). Do measures matter? Comparing surface-density-derived and census-tract-derived measures of racial residential segregation. International Journal of Health Geographics, 9, 29.

    Article  Google Scholar 

  41. Lee, B. A., Reardon, S. F., Firebaugh, G., Farrell, C. R., Matthews, S. A., & O’Sullivan, D. (2008). Beyond the census tract: Patterns and determinants of racial segregation at multiple geographic scales. American Sociological Review, 73, 766–791.

    Article  Google Scholar 

  42. Logan, J. R. (2012). Making a place for space: Spatial thinking in social science. Annual Review of Sociology, 38, 507–524.

    Article  Google Scholar 

  43. Logan, J. R., Jindrich, J., Shin, H., & Zhang, W. (2011). Mapping America in 1880: The urban transition historical GIS project. Historical Methods, 44, 49–60.

    Article  Google Scholar 

  44. Lunn, D. J., Spiegelhalter, D. J., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28, 3049–3067.

    Article  Google Scholar 

  45. Matthews, S. A. (2011). Spatial polygamy and the heterogeneity of place: Studying people and place via egocentric methods. In L. M. Burton, S. P. Kemp, M. Leung, S. A. Matthews, & D. T. Takeuchi (Eds.), Communities, neighborhoods, and health: Expanding the boundaries of place (pp. 35–55). New York, NY: Springer.

    Google Scholar 

  46. Montgomery, M. R., & Hewett, P. C. (2005). Urban poverty and health in developing countries: Household and neighborhood effects. Demography, 42, 397–425.

    Article  Google Scholar 

  47. Morenoff, J. D. (2003). Neighborhood mechanisms and the spatial dynamics of birth weight. American Journal of Sociology, 108, 976–1017.

    Article  Google Scholar 

  48. Openshaw, S. (1984). The modifiable areal unit problem. Norwich, CT: GeoBooks.

    Google Scholar 

  49. Powers, D. A., & Xie, Y. (2008). Statistical methods for categorical data analysis. Bingley, UK: Emerald.

    Google Scholar 

  50. Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and longitudinal modeling using Stata. College Station, TX: Stata Press.

    Google Scholar 

  51. Rabin, Y. (1987). The roots of segregation in the eighties: The role of local government actions. In G. A. Tobin (Ed.), Divided neighborhoods: Changing patterns of racial segregation (pp. 208–226). Newbury Park, CA: Sage Publications.

    Google Scholar 

  52. Read, J. G., & Gorman, B. K. (2010). Gender and health inequality. Annual Review of Sociology, 36, 371–386.

    Article  Google Scholar 

  53. Reardon, S. F., Matthews, S. A., O’Sullivan, D., Lee, B. A., Firebaugh, G., Farrell, C. R., & Bischoff, K. (2008). The geographic scale of metropolitan racial segregation. Demography, 45, 489–515.

    Article  Google Scholar 

  54. Reardon, S. F., & O’Sullivan, D. (2004). Measures of spatial segregation. Sociological Methodology, 34, 351–364.

    Article  Google Scholar 

  55. Reid, A. (2002). Infant feeding and post-neonatal mortality in Derbyshire, England, in the early twentieth century. Population Studies, 56, 151–166.

    Article  Google Scholar 

  56. Riva, M., Gauvin, L., Apparicio, P., & Brodeur, J.-M. (2009). Disentangling the relative influence of built and socioeconomic environments on walking: The contribution of areas homogenous along exposures of interest. Social Science & Medicine, 69, 1296–1305.

    Article  Google Scholar 

  57. Roberts, E. M. (1997). Neighborhood social environments and the distribution of low birth weight in Chicago. American Journal of Public Health, 87, 597–603.

    Article  Google Scholar 

  58. Rothenberg, R., Muth, S. Q., Malone, S., Potterat, J. J., & Woodhouse, D. E. (2005). Social and geographic distance in HIV risk. Sexually Transmitted Diseases, 32, 506–512.

    Article  Google Scholar 

  59. Rothenberg, R. B., & Potterat, J. J. (1988). Temporal and social aspects of gonorrhea transmission: The force of infectivity. Sexually Transmitted Diseases, 15, 88–92.

    Article  Google Scholar 

  60. Sampson, R. J., Morenoff, J. D., & Earls, F. (1999). Beyond social capital: Spatial dynamics of collective efficacy for children. American Sociological Review, 64, 633–660.

    Article  Google Scholar 

  61. Sampson, R. J., Morenoff, J. D., & Gannon-Rowley, T. (2002). Assessing neighborhood effects: Social processes and new directions in research. Annual Review of Sociology, 28, 443–478.

    Article  Google Scholar 

  62. Short, S. E., Linmao, M., & Wentao, Y. (2000). Birth planning and sterilization in China. Population Studies, 54, 279–291.

    Article  Google Scholar 

  63. Siqueira-Junior, J., Maciel, I., Barcellos, C., Souza, W., Carvalho, M., Nascimento, N., & Martelli, C. (2008). Spatial point analysis based on dengue surveys at household level in central Brazil. BMC Public Health, 8, 1–9.

    Article  Google Scholar 

  64. Sobek, M. (1996). Work, status, and income: Men in the American occupational structure since the late nineteenth century. Social Science History, 20, 169–207.

    Article  Google Scholar 

  65. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583–639.

    Article  Google Scholar 

  66. Spielman, S. E., & Yoo, E.-H. (2009). The spatial dimensions of neighborhood effects. Social Science & Medicine, 68, 1098–1105.

    Article  Google Scholar 

  67. Taeuber, K. E., & Taeuber, A. F. (1965). Negroes in cities. Chicago, IL: Aldine.

    Google Scholar 

  68. Theil, H. (1972). Statistical decomposition analysis. Amsterdam, The Netherlands: North-Holland Publishing Company.

    Google Scholar 

  69. Thornton, P., & Olson, S. (2011). Mortality in late nineteenth-century Montreal: Geographic pathways of contagion. Population Studies, 65, 157–181.

    Article  Google Scholar 

  70. Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  71. Weeks, J., Stoler, J., Hill, A., & Zvoleff, A. (2013). Fertility in context: Exploring egocentric neighborhoods in Accra. In J. R. Weeks, A. G. Hill, & J. Stoler (Eds.), Spatial inequalities (pp. 159–177). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  72. Xie, Z., & Yan, J. (2008). Kernel density estimation of traffic accidents in a network space. Computers, Environment and Urban Systems, 32, 396–406.

    Article  Google Scholar 

  73. Xu, H., & Short, S. E. (2011). Health insurance coverage rates in 9 provinces in China doubled from 1997 to 2006, with a dramatic rural upswing. Health Affairs, 30, 2419–2426.

    Article  Google Scholar 

  74. Xu, H., Short, S. E., & Liu, T. (2013). Dynamic relations between fast-food restaurant and body weight status: A longitudinal and multilevel analysis of Chinese adults. Journal of Epidemiology & Community Health, 67, 271–279.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the research initiative on Spatial Structures in the Social Sciences at Brown University for providing the historical GIS data used in this study. The historical GIS data collection used in this work was supported by the National Science Foundation (Grant No. 0647584) and the National Institutes of Health (Grant No. 1R01HD049493–01A2). The authors gratefully acknowledge research support from the Population Studies and Training Center at Brown University, which receives core support from the NICHD (5R24HD041020, 5T32HD007338). The authors also thank Margot Jackson and participants at the 2011 annual meeting of the Population Association of America for helpful comments on an early draft of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongwei Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Logan, J.R. & Short, S.E. Integrating Space With Place in Health Research: A Multilevel Spatial Investigation Using Child Mortality in 1880 Newark, New Jersey. Demography 51, 811–834 (2014). https://doi.org/10.1007/s13524-014-0292-y

Download citation

Keywords

  • Spatial
  • Multilevel
  • Egocentric neighborhood
  • Child mortality
  • Neighborhood effects