Skip to main content

Regional scale analysis of land cover dynamics in Kerala over last two decades through MODIS data and statistical techniques

Abstract 

The impact of climate change and the effect of rapid urbanisation in a region can be best identified by detecting land use and land cover changes. The present research attempts to statistically evaluate the land cover changes in the state of Kerala over two decades (2001–2019), using land cover derived by the supervised classification of Moderate Resolution Imaging Spectroradiometer (MODIS) datasets. Land cover classification, based on the International Geosphere-Biosphere Programme (IGBP), differentiated nine land cover types in the region such as forests (F), shrublands/scrublands (SL), savannas (S), croplands (CL), grasslands (GL), urban and built-up lands (UBL), cropland/natural vegetation mosaics (CLNVM), water body (WB) and other types (OT). Among the land cover types, savannas cover more than 41% of the total area, followed by forests (20%) and cropland/natural vegetation mosaics (14%). During the analysis period, forests, cropland/natural vegetation mosaics and built-up lands showed increases in their area coverage. Furthermore, the decadal (D1 and D2) analysis of land cover dynamics reveals that maximum spatial variation in area coverage of individual land cover occurred in the second decade, i.e. D2 (2011–2019). Accurate examination of the distribution of land cover types indicates the elevation dependant gradational land cover pattern in the study area. Trend statistics of land cover assessed through Mann–Kendall and linear regression analysis also showed similar results with a statistically significant increase in the area covered by forests, shrublands, urban and built-up lands and cropland/natural vegetation mosaics. In contrast, savannas and grasslands showed a significant decreasing trend. Together, the results indicate an increasing pattern of urbanisation and the development of cropland/natural vegetation mosaics, irrespective of elevation and land cover types point towards the degradation and fragmentation of strong and healthy vegetation cover in the region. Furthermore, the present research finding will help researchers and policy makers to concentrate on areas that showed maximum changes in land cover to derive accurate and sustainable environmental protection and development plans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

In this research, MODIS MCD12Q1 data is obtained from the USGS earth explore website https://earthexplorer.usgs.gov/.

All accepted principles of ethical and professional conduct have been followed during this research in accordance with Springer’s standards.

References

  • Agbo EP, Ekpo CM, Edet CO (2021) Analysis of the effects of meteorological parameters on radio refractivity, equivalent potential temperature and field strength via Mann-Kendall test. Theor Appl Climat 143(3):1437–1456

    Article  Google Scholar 

  • Akgün, A., Eronat, A.H. and Türk, N., 2004. Comparing different satellite image classification methods: an application in Ayvalik District, Western Turkey. In The 4th International Congress for Photogrammetry and Remote Sensing, Istanbul, Turkey.

  • Alcantara C, Kuemmerle T, Prishchepov AV, Radeloff VC (2012) Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens Environ 124:334–347

    Article  Google Scholar 

  • Almeida CAD, Coutinho AC, Esquerdo JCDM, Adami M, Venturieri A, Diniz CG, Dessay N, Durieux L, Gomes AR (2016) High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazon 46:291–302

    Article  Google Scholar 

  • Arulbalaji P, Maya K (2019) Effects of land use dynamics on hydrological response of watershed: a case study of Chittar watershed, Vamanapuram River Basin, Thiruvananthapuram District, Kerala. India Water ConserSci and Eng 4(1):33–41

    Article  Google Scholar 

  • Arveti N, Etikala B, Dash P (2016) Land use/land cover analysis based on various comprehensive geospatial data sets: a case study from Tirupati area, south India. Adv Remote Sen 5(02):73

    Article  Google Scholar 

  • Ay, M., 2021. Trend tests on maximum rainfall series by a novel approach in the Aegean region, Turkey. Meteorol. Atmos. Phys. 1–15.

  • Baeza S, Paruelo JM (2020) Land use/land cover change (2000–2014) in the Rio de la Plata grasslands: an analysis based on MODIS NDVI time series. Remote Sens 12(3):381

    Article  Google Scholar 

  • Belward AS, Estes JE, Kline KD (1999) The IGBP-DIS global 1-Km land-cover data set DlSCover: a project overview. Photogrammetric Eng & Rem Sen 65(9):1013–1020

    Google Scholar 

  • Brown JC, Kastens JH, Coutinho AC, de Castro Victoria D, Bishop CR (2013) Classifying multiyear agricultural land use data from MatoGrosso using time-series MODIS vegetation index data. Remote Sens Environ 130:39–50

    Article  Google Scholar 

  • Cai S, Liu D, Sulla-Menashe D, Friedl MA (2014) Enhancing MODIS land cover product with a spatial–temporal modeling algorithm. Remote Sens Environ 147:243–255

    Article  Google Scholar 

  • Chen TL (2021) Mapping temporal and spatial changes in land use and land surface temperature based on MODIS data. Environ Res 196:110424

    Article  CAS  Google Scholar 

  • Choi M, Jacobs JM, Anderson MC, Bosch DD (2013) Evaluation of drought indices via remotely sensed data with hydrological variables. J Hydrol 476:265–273

    Article  Google Scholar 

  • Chun-gui ZHANG, Wei-hua PAN, Hui CHEN, Jing LIN (2006) Application of MODIS data to monitoring of land use/cover changes in Fuzhou region. Chin J Agrometeorol 27(04):300

    Google Scholar 

  • Clavero M, Villero D, Brotons L (2011) Climate change or land use dynamics: do we know what climate change indicators indicate? PLoS ONE 6(4):e18581

    Article  CAS  Google Scholar 

  • Correia Filho WLF, de Barros Santiago D, de Oliveira-Júnior JF, da Silva Junior CA, da Silva Oliveira SR, da Silva EB, Teodoro PE (2021) Analysis of environmental degradation in Maceió-Alagoas, Brazil via orbital sensors: a proposal for landscape intervention based on urban afforestation. Remote Sen App Society and Envir 24:100621

    Google Scholar 

  • Correia Filho WLF, de Oliveira-Júnior JF, dos Santos CTB, Batista BA, de Barros Santiago D, da Silva Junior CA, Teodoro PE, da Costa CES, da Silva EB, Freire FM (2022) The influence of urban expansion in the socio-economic, demographic, and environmental indicators in the City of Arapiraca-Alagoas, Brazil. Remote Sen App Society and Envir 25:100662

    Google Scholar 

  • Cui T, Yang T, Xu CY, Shao Q, Wang X, Li Z (2018) Assessment of the impact of climate change on flow regime at multiple temporal scales and potential ecological implications in an alpine river. Stochastic Envir Res and Risk Assess 32(6):1849–1866

    Article  Google Scholar 

  • Dale VH (1997) The relationship between land-use change and climate change. Eco App 7(3):753–769

    Article  Google Scholar 

  • da Silva Junior CA, de Medeiros Costa G, Rossi FS, do Vale, J.C.E., de Lima, R.B., Lima, M., de Oliveira-Junior, J.F., Teodoro, P.E. and Santos, R.C., (2019) Remote sensing for updating the boundaries between the Brazilian Cerrado-Amazonia biomes. EnvirSci & Policy 101:383–392

    Article  Google Scholar 

  • da Silva Cruz J, Blanco CJC, de Oliveira Júnior JF (2022) Modeling of land use and land cover change dynamics for future projection of the Amazon number curve. Sci of the Total Envir 811:152348

    Article  CAS  Google Scholar 

  • Dawson B, Spannagle M (2009) The complete guide to climate change. Routledge, New York, pp 78–88

    Google Scholar 

  • DES, 2020. Agriculture Statistics 2018-19. Department of Economics and Statistics, Government of Kerala. http://www.ecostat.kerala.gov.in/images/pdf/publications/Agriculture/data/2018-19/agriculture_statistics_2018_19.pdf

  • Donner A (1984) Linear regression analysis with repeated measurements. J Chronic Dis 37(6):441–448

    Article  CAS  Google Scholar 

  • Ekumah B, Armah FA, Afrifa EK, Aheto DW, Odoi JO, Afitiri AR (2020) Assessing land use and land cover change in coastal urban wetlands of international importance in Ghana using intensity analysis. Wetl Ecol Manag 28(2):271–284

    Article  Google Scholar 

  • Falcucci A, Maiorano L, Boitani L (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc Ecol 22(4):617–631

    Article  Google Scholar 

  • Fox TA, Rhemtulla JM, Ramankutty N, Lesk C, Coyle T, Kunhamu TK (2017) Agricultural land-use change in Kerala, India: perspectives from above and below the canopy. Agric Ecosyst Environ 245:1–10

    Article  Google Scholar 

  • Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens Environ 114(1):168–182

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JC, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83(1–2):287–302

    Article  Google Scholar 

  • Giri C, Pengra B, Long J, Loveland TR (2013) Next generation of global land cover characterization, mapping, and monitoring. Int J Appl Earth Obs Geoinf 25:30–37

    Google Scholar 

  • Giri C, Zhu Z, Reed B (2005) A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens Environ 94(1):123–132

    Article  Google Scholar 

  • Gopinath G, Ambili GK, Gregory SJ, Anusha CK (2015) Drought risk mapping of south-western state in the Indian peninsula–a web based application. Journal of Envir Manage 161:453–459

    Article  Google Scholar 

  • Gopinath G, Surendran U, Abhilash S, NagaKumar KCV, Anusha CK (2020) Assessment of drought with a real-time web-based application for drought management in humid tropical Kerala. India Envirmonit and Assess 192(11):1–15

    Google Scholar 

  • Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Change 100:172–182

    Article  Google Scholar 

  • Goldewijk KK, Ramankutty N (2004) Land cover change over the last three centuries due to human activities: the availability of new global data sets. GeoJournal 61(4):335–344

    Article  Google Scholar 

  • Güçlü YS (2018) Multiple Şen-innovative trend analyses and partial Mann-Kendall test. J Hydrol 566:685–704

    Article  Google Scholar 

  • Han JC, Huang Y, Zhang H, Wu X (2019) Characterization of elevation and land cover dependent trends of NDVI variations in the Hexi region, northwest China. Jenvir Manage 232:1037–1048

    Google Scholar 

  • Hamed KH (2009) Exact distribution of the Mann-Kendall trend test statistic for persistent data. J Hydrol 365(1–2):86–94

    Article  Google Scholar 

  • Hishe H, Giday K, Van Orshoven J, Muys B, Taheri F, Azadi H, Feng L, Zamani O, Mirzaei M, Witlox F (2021) Analysis of land use land cover dynamics and driving factors in Desa’a forest in Northern Ethiopia. Land Use Policy 101:105039

    Article  Google Scholar 

  • Hou W, Hou X (2019) Data fusion and accuracy analysis of multi-source land use/land cover datasets along coastal areas of the Maritime Silk Road. ISPRS Int J Geo-Inf 8(12):557

    Article  Google Scholar 

  • How Jin Aik D, Ismail MH, Muharam FM, Alias MA (2021) Evaluating the impacts of land use/land cover changes across topography against land surface temperature in Cameron Highlands. PLoS ONE 16(5):e0252111

  • Huang B, Zhao B, Song Y (2018) Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sen Environ 214:73–86

    Article  Google Scholar 

  • Huang X, Wang Y, Li J, Chang X, Cao Y, Xie J, Gong J (2020) High-resolution urban land-cover mapping and landscape analysis of the 42 major cities in China using ZY-3 satellite images. Sci Bull 65(12):1039–1048

    Article  Google Scholar 

  • ISFR, 2019. India state of forest report 2019. Forest Survey of India, Ministry of Environment, Forest & Climate Change, Government of India. https://static.pib.gov.in/WriteReadData/userfiles/ISFR2019%20Vol-II.pdf. (accessed on 01.06.2021)

  • ISFR, 2021. India state of forest report 2021. Forest Survey of India, Ministry of Environment, Forest & Climate Change, Government of India. https://fsi.nic.in/forest-report-2021-details. (accessed on 21.03.2022)

  • John, J., Bindu, G., Srimuruganandam, B., Wadhwa, A., Rajan, P., 2020. Land use/land cover and land surface temperature analysis in Wayanad district, India, using satellite imagery. Annals of GIS, 1–18.

  • John J, Chithra NR, Thampi SG (2021) Assessment of land surface temperature dynamics over the Bharathapuzha River Basin. India Acta Geophysica 69(3):855–876

    Article  Google Scholar 

  • Jose M, Padmanabhan M (2016) Dynamics of agricultural land use change in Kerala: a policy and social-ecological perspective. Int J Agric Sustain 14(3):307–324

    Article  Google Scholar 

  • Joshi N, Baumann M, Ehammer A, Fensholt R, Grogan K, Hostert P, Jepsen MR, Kuemmerle T, Meyfroidt P, Mitchard ET, Reiche J (2016) A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens 8(1):70

    Article  Google Scholar 

  • Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT (2002) An overview of MODIS Land data processing and product status. Remote Sens Environ 83(1–2):3–15

    Article  Google Scholar 

  • Kang JH, Suh MS, Kwak CH (2010) Land cover classification over East Asian region using recent MODIS NDVI data (2006–2008). Atmosphere 20(4):415–426

    Google Scholar 

  • Kendall MG (1948) Rank correlation methods. Published by C, Griffin, London. https://doi.org/10.2307/2333282

    Book  Google Scholar 

  • KFS, 2018. Kerala Forest Statistics, Kerala Forest Department, Government of Kerala. Thiruvanathapuram. (accessed on 01.06.2021)

  • KFWD, 2021. Kerala Forest and Wildlife Department, Forest statistics. https://forest.kerala.gov.in/index.php/forest/forest-area. (accessed on 01.06.2021)

  • Kim C (2016) Land use classification and land use change analysis using satellite images in Lombok Island. Indonesia Forest Sci Technol 12(4):183–191

    Article  Google Scholar 

  • Klein I, Gessner U, Kuenzer C (2012) Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl Geography 35(1–2):219–234

    Article  Google Scholar 

  • KSPB 2014. Kerala State Planning Board. Perspective plan 2030 Kerala. Entrepreneurialism and Environmental Sustainability, Vol. III. https://www.ncaer.org/image/userfiles/file/Kerala%202030/KPP-2030-Vol-3.pdf. (accessed on 15.06.2021)

  • Kumar BM (2006) Land use in Kerala: changing scenarios and shifting paradigms. J Trop Agric 43:1–12

    Google Scholar 

  • Kumari K, Yadav S (2018) Linear regression analysis study. J Pract Cardiovasc Sci 4(1):33

    Article  Google Scholar 

  • Li G, Lu D, Moran E, Sant’Anna SJ (2012) Comparative analysis of classification algorithms and multiple sensor data for land use/land cover classification in the Brazilian Amazon. J Appl Remote Sens 6(1):061706

    Article  Google Scholar 

  • Liang D, Zuo Y, Huang L, Zhao J, Teng L, Yang F (2015) Evaluation of the consistency of MODIS land cover product (MCD12Q1) based on Chinese 30 m GlobeLand30 datasets: a case study in Anhui Province. China ISPRS Int J Geo-Inf 4(4):2519–2541

    Article  Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. John Wiley & Sons

    Google Scholar 

  • Lpdaac, 2014. Land processes distributed active archive center. https://lpdaac.usgs.gov/. (Accessed 01 May 2021).

  • Ma L, Li M, Ma X, Cheng L, Du P, Liu Y (2017) A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Rem Sen 130:277–293

    Article  Google Scholar 

  • Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: J. Econometric Soc. 245–259.

  • Mao L, Qiu Y, Kusano, C., Xu, X., 2012. Predicting regional space–time variation of PM 2.5 with land-use regression model and MODIS data. Environ. Sci. Pollut. Res. 19(1), 128–138.

  • Minder JR, Letcher TW, Liu C (2018) The character and causes of elevation-dependent warming in high-resolution simulations of Rocky Mountain climate change. J of Climate 31(6):2093–2113

    Article  Google Scholar 

  • Mondal, A., Kundu, S., Mukhopadhyay, A., 2012. Rainfall trend analysis by Mann-Kendall test: a case study of north-eastern part of Cuttack district, Orissa. Int. J. Geo., Earth Environ. Sci. 2(1), 70–78.

  • Montgomery DC, Peck EA, Vining GG (2021) Introduction to linear regression analysis. John Wiley & Sons

    Google Scholar 

  • Newbold T (2018) Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc R Soc B 285(1881):20180792

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J (2015) Global effects of land use on local terrestrial biodiversity. Nature 520(7545):45–50

    Article  CAS  Google Scholar 

  • Nguyen LH, Joshi DR, Clay DE, Henebry GM (2020) Characterizing land cover/land use from multiple years of Landsat and MODIS time series: a novel approach using land surface phenology modeling and random forest classifier. Remote Sens Environ 238:111017

    Article  Google Scholar 

  • Nyikadzino, B., Chitakira, M., Muchuru, S., 2020. Rainfall and runoff trend analysis in the Limpopo river basin using the Mann Kendall statistic. Phy. Chem. Earth, Parts A/B/C, 117, 102870.

  • Pandey PC, Koutsias N, Petropoulos GP, Srivastava PK, Ben Dor E (2021) Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto Int 36(9):957–988

    Article  Google Scholar 

  • Parsa VA, Yavari A, Nejadi A (2016) Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran Biosphere Reserve: Iran. Model Earth Syst Environ 2(4):1–13

    Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraër M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430

    Article  Google Scholar 

  • Pielke Sr RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change 2(6):828–850

  • Prasad G, Ramesh MV (2019) Spatio-temporal analysis of land use/land cover changes in an ecologically fragile area—Alappuzha District, Southern Kerala. India Nat Resour Res 28(1):31–42

    Article  Google Scholar 

  • Raghavendra BR, Aslam MM (2017) Sensitivity of vegetation indices of MODIS data for the monitoring of rice crops in Raichur district, Karnataka, India. Egypt J Remote Sens Space Sci 20(2):187–195

    Google Scholar 

  • Rahman MA, Yunsheng L, Sultana N (2017) Analysis and prediction of rainfall trends over Bangladesh using Mann-Kendall, Spearman’s rho tests and ARIMA model. Meteorol Atmos Phys 129(4):409–424

    Article  Google Scholar 

  • Ramachandran RM, Reddy CS (2017) Monitoring of deforestation and land use changes (1925–2012) in Idukki district, Kerala, India using remote sensing and GIS. J Indian Soc Remote Sens 45(1):163–170

    Article  Google Scholar 

  • Reeves, M. and Bedunah, D.J., 2006. A comparison of low cost satellite imagery for pastoral planning projects in Central Asia. In Rangelands of Central Asia: Proceedings of the Conference on Transformations, Issues, and Future Challenges: in Conjunction with the 57th Annual Meeting for the Society for Range Management, Rangelands in Transition, January 24–30, 2004, Salt Lake City,Utah (Vol. 5, p. 120). US Department of Agriculture, Forest Service, Rocky Mountain Research Station.

  • Salomonson, V.V., Barnes, W., Masuoka, E.J., 2006. Introduction to MODIS and an overview of associated activities. Earth sci. satell. remotesens. 12–32.

  • Savtchenko A, Ouzounov D, Ahmad S, Acker J, Leptoukh G, Koziana J, Nickless D (2004) Terra and Aqua MODIS products available from NASA GES DAAC. Adv Space Res 34(4):710–714

    Article  Google Scholar 

  • Schneider A, Friedl MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Letters 4(4):044003

    Article  Google Scholar 

  • Schulz C, Koch R, Cierjacks A, Kleinschmit B (2017) Land change and loss of landscape diversity at the Caatingaphytogeographical domain–analysis of pattern-process relationships with MODIS land cover products (2001–2012). J Arid Environ 136:54–74

    Article  Google Scholar 

  • See LM, Fritz S (2006) A method to compare and improve land cover datasets: application to the GLC-2000 and MODIS land cover products. IEEE Trans Geosci Remote Sens 44(7):1740–1746

    Article  Google Scholar 

  • Semih KALE, Ejder T, Hisar O, Mutlu F (2016) Climate change impacts on streamflow of Karamenderes River (Çanakkale, Turkey). Marine Sci and Tech Bull 5(2):1–6

    Google Scholar 

  • Sheeja RV, Joseph S, Jaya DS, Baiju RS (2011) Land use and land cover changes over a century (1914–2007) in the Neyyar River Basin, Kerala: a remote sensing and GIS approach. Int J Digit Earth 4(3):258–270

    Article  Google Scholar 

  • Simoes R, Picoli MC, Camara G, Maciel A, Santos L, Andrade PR, Sánchez A, Ferreira K, Carvalho A (2020) Land use and cover maps for MatoGrosso State in Brazil from 2001 to 2017. Scientific Data 7(1):1–10

    Article  Google Scholar 

  • Singh SK, Laari PB, Mustak SK, Srivastava PK, Szabó S (2018) Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh. India Geocarto Int 33(11):1202–1222

    Article  Google Scholar 

  • Strahler, A., Muchoney, D., Borak, J., Friedl, F., Gopal, S., Lambin, L., Moody, A., 1999. MODIS land cover product algorithm theoretical basis document (ATBD), http://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf, 72 pp.

  • Soulard CE, Wilson TS (2015) Recent land-use/land-cover change in the Central California Valley. J of Land Use Sci 10(1):59–80

    Article  Google Scholar 

  • Su Z (2000) Remote sensing of land use and vegetation for mesoscale hydrological studies. Int J Remote Sens 21(2):213–233

    Article  Google Scholar 

  • Sulla-Menashe, D., Friedl, M.A., 2018. User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. USGS: Reston, VA, USA, 1–18.

  • Sulla-Menashe D, Gray JM, Abercrombie SP, Friedl MA (2019) Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens Environ 222:183–194

    Article  Google Scholar 

  • Sunderland, T.C. and Rowland, D., 2019. Forests, land use, and challenges to climate stability and food security. In Sustainable Food and Agriculture (pp. 95–116). Academic Press.

  • SUR, 2012. State Urbanisation report. https://townplanning.kerala.gov.in/town/wp-content/uploads/2018/12/SUR.pdf (accessed on 15.06.2021)

  • Taylor JL, Acevedo W, Auch RF, Drummond MA (eds) (2015) Status and trends of land change in the Great Plains of the United States: 1973 to 2000. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Thapa P (2021). The Relationship between Land Use and Climate Change: a Case Study of Nepal. https://doi.org/10.5772/intechopen.98282

    Article  Google Scholar 

  • Toure SI, Stow DA, Shih HC, Weeks J, Lopez-Carr D (2018) Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sens Environ 210:259–268

    Article  Google Scholar 

  • Usman M, Liedl R, Shahid MA, Abbas A (2015) Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. J Geograph Sci 25(12):1479–1506

    Article  Google Scholar 

  • Ustuner M, Sanli FB, Dixon B (2015) Application of support vector machines for landuse classification using high-resolution rapideye images: a sensitivity analysis. Europ J Remote Sens 48(1):403–422

    Article  Google Scholar 

  • Uyanık GK, Güler N (2013) A study on multiple linear regression analysis. Procedia-Soc Behav Sci 106:234–240

    Article  Google Scholar 

  • Wang SW, Munkhnasan L, Lee WK (2021) Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ Challenges 2:100017

    Article  Google Scholar 

  • Wang, Y., He, M.Y., Xiang, J., Zhou, Z.M., 2016. Review of land cover classification based on remote sensing data. In Proc. 3rd Int. Conf. Wireless Commun. Sensor Netw.

  • Wu G, De Leeuw J, Skidmore AK, Prins HH, Liu Y (2008) Comparison of MODIS and Landsat TM5 images for mapping tempo–spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve. China Inter J of Rem Sen 29(8):2183–2198

    Article  Google Scholar 

  • Xu Y, Yu L, Peng D, Zhao J, Cheng Y, Liu X, Li W, Meng R, Xu X, Gong P (2020) Annual 30-m land use/land cover maps of China for 1980–2015 from the integration of AVHRR, MODIS and Landsat data using the BFAST algorithm. Sci China Earth Sci 63:1390–1407

    Article  Google Scholar 

  • Yan J, Wang L, Song W, Chen Y, Chen X, Deng Z (2019) A time-series classification approach based on change detection for rapid land cover mapping. ISPRS J Photogramm Remote Sens 158:249–262

    Article  Google Scholar 

  • Yang X, Lo CP (2002) Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int J Remote Sens 23(9):1775–1798

    Article  Google Scholar 

  • Young DJ, Stevens JT, Earles JM, Moore J, Ellis A, Jirka AL, Latimer AM (2017) Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol Lett 20(1):78–86

    Article  Google Scholar 

  • Zafar Z, Mehmood MS, Ahamad MI, Chudhary A, Abbas N, Khan AR, Zulqarnain RM, Abdal S (2021) Trend analysis of the decadal variations of water bodies and land use/land cover through MODIS imagery: an in-depth study from Gilgit-Baltistan. Pakistan Water Supply 21(2):927–940

    Article  CAS  Google Scholar 

  • Zhang X, Harvey KD, Hogg WD, Yuzyk TR (2001) Trends in Canadian streamflow. Water Resou Res 37(4):987–998

    Article  Google Scholar 

  • Zomlot Z, Verbeiren B, Huysmans M, Batelaan O (2017) Trajectory analysis of land use and land cover maps to improve spatial–temporal patterns, and impact assessment on groundwater recharge. J Hydrol 554:558–569

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers and Editor-in-Chief for their critical review, constructive comments and suggestions, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijith H..

Ethics declarations

Ethics approval

This manuscript has not been published, accepted for publication or under editorial review for publication elsewhere.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

H., V., Krishnan MV., N. & Sulemana, A. Regional scale analysis of land cover dynamics in Kerala over last two decades through MODIS data and statistical techniques. J Environ Stud Sci 12, 577–593 (2022). https://doi.org/10.1007/s13412-022-00766-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13412-022-00766-w

Keywords

  • Land cover
  • MODIS
  • Spatio-temporal
  • Statistics
  • Mann–Kendall
  • Urban agglomeration