Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability

Abstract

The purpose of this paper is to explore how socioeconomic and technological shifts in Canadian and American food production, processing, and distribution have impacted resilience in the food system. First, we use the social ecological systems literature to define food system resilience as a function of that system’s ability to absorb external shocks while maintaining core functions, such as food production and distribution. We then use the literature to argue that we can infer food system resilience by exploring three key dimensions: (1) the diversity of the food system’s components, (2) the degree to which the components are connected, and (3) the degree of decision-making autonomy within the food system. Next, we discuss the impacts of industrialization on these three factors within Canada and the USA. Specifically, we show how processes of corporate concentration, farm-scale intensification, mechanization, and the “cost-price squeeze” have led to a decrease in ecological and economic diversity, a high degree of spatial and organizational connectivity, and a diminished decision-making capacity for individual farmers. While this analysis is qualitative and heuristic, the evidence reviewed here leads us to postulate that our food system is becoming less resilient to external shocks such as climate change. We conclude by discussing four possible strategies to restore resilience and suggest a more transformational shift in food system politics and practice. Specifically, we argue that publicly led multifunctional policies may support more diversified production while programs to promote food system localization can increase farmer autonomy. However, these shifts will not be possible without social-structural corrections of current power imbalances in the food system. This policy discussion reinforces the value of the social ecological framework and, specifically, its capacity to produce an analysis that interweaves ecology, economy, and power.

This is a preview of subscription content, log in to check access.

Fig. 1

Notes

  1. 1.

    Occurred between 1845 and 1850 and was caused by a potato blight that triggered a famine which killed or displaced 25 % of the Irish population (Fraser 2003).

  2. 2.

    Measured by the mean change in similarity between each country and the global standard composition.

  3. 3.

    Although many scholars argue that concentration in the food system occurred long before the 1950s, a number of concurrent shifts caused concentration in the post-war era of food production to be both more comprehensive and more structurally transformative (Winson 1993).

  4. 4.

    Replicating the functions of natural systems in their applicable ecological context: i.e., establishing “species and mixtures of species appropriate to specific environments” (Jackson 2002). Jackson highlights the “perennial polyculture” as a functionally effective form of “natural systems agriculture” in prairie ecosystems (Jackson 2002).

  5. 5.

    Especially through non-governmental organizations (NGOs), community groups, and neighborhood initiatives.

References

  1. Agriculture and Agri-food Canada (AAFC) (2012) An overview of the Canadian agriculture and agri-food system. AAFC, Ottawa

  2. Abson DJ, Fraser ED, Benton TG (2013) Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric Food Secur 2:2. doi:10.1186/2048-7010-2-2

    Article  Google Scholar 

  3. Adger WN (2006) Vulnerability. Glob Environ Chang 16:268–281. doi:10.1016/j.gloenvcha.2006.02.006

    Article  Google Scholar 

  4. Adger WN, Brown K (2009) Vulnerability and resilience to environmental change: ecological and social perspectives. In: Castree N, Demeritt D, Liverman D, Rhoads B (eds) A companion to environmental geography. Blackwell, Oxford, pp 109–122

  5. Adger WN, Hughes T, Folke C et al (2005) Social-ecological resilience to coastal disasters. Science 309(5737):1036–1039

  6. Alonso-Fradejas A, Borras SM, Holmes T et al (2015) Food sovereignty: convergence and contradictions, conditions and challenges. Third World Q 36:431–448. doi:10.1080/01436597.2015.1023567

    Article  Google Scholar 

  7. Baker L, Campsie P, Rabinowicz K (2010) Menu 2020: ten good food ideas for Ontario. Metcalf Food Solutions, Toronto

  8. Becton L (2014) Update on PEDV research. Minnesota Pork Congress, Minneapolis

    Google Scholar 

  9. Bennett AJ, Bending GD, Chandler D et al (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev Camb Philos Soc 87:52–71. doi:10.1111/j.1469-185X.2011.00184.x

    Article  Google Scholar 

  10. Berardi G, Green R, Hammond B (2011) Stability, sustainability, and catastrophe: applying resilience thinking to U.S. agriculture. Res Hum Ecol 18:115–125

    Google Scholar 

  11. Berkes F, Colding J, Folke C (2003) Navigating social-ecological systems: building resilience for complexity and change. Cambridge University Press, Cambridge

    Google Scholar 

  12. Blackwell BF, Dolbeer RA (2001) Decline of the red-winged blackbird population in Ohio correlated to changes in agriculture. J Wildl Manag 65:661–667

    Article  Google Scholar 

  13. Bonanno A, Busch L, Friedland WH et al (1994) Introduction. In: Bonanno A, Busch L, Friedland WH et al (eds) From Columbus to Conagra: the globalization of agriculture and food. University Press of Kansas, Lawrence, p 294

  14. Boody G, Vondracek B, Andow DA et al (2005) Multifunctional agriculture in the United States. Bioscience 55:27–38

    Article  Google Scholar 

  15. Born B, Purcell M (2006) Avoiding the local trap: scale and food systems in planning research. J Plan Educ Res 26:195–207. doi:10.1177/0739456X06291389

    Article  Google Scholar 

  16. Bradshaw B (2004) Plus c’est la même chose? Questioning crop diversification as a response to agricultural deregulation in Saskatchewan, Canada. J Rural Stud 20:35–48. doi:10.1016/S0743-0167(03)00033-0

    Article  Google Scholar 

  17. Brent ZW, Schiavoni CM, Alonso-Fradejas A (2015) Contextualising food sovereignty: the politics of convergence among movements in the USA. Third World Q 36:618–635. doi:10.1080/01436597.2015.1023570

    Article  Google Scholar 

  18. Bretting P, Stoner A, Widrlechner M, Williams K (2011) Country report on the state of plant genetic resources for food and agriculture: United States of America. Food and Agriculture Organization of the United Nations

  19. Brown K (2014) Global environmental change I: a social turn for resilience? Prog Hum Geogr 38:107–117. doi:10.1177/0309132513498837

    Article  Google Scholar 

  20. Bryant C, Smit B, Brklacich M et al (2000) Adaptation in Canadian agriculture to climatic variability and change. Clim Change 45:181–201

    Article  Google Scholar 

  21. Bullock DG (1992) Crop rotation. Crit Rev Plant Sci 11:309–326

    Article  Google Scholar 

  22. Burch D, Lawrence G (2009) Towards a third food regime: behind the transformation. Agric Hum Values 26:267–279. doi:10.1007/s10460-009-9219-4

    Article  Google Scholar 

  23. Burnett K, Murphy S (2014) What place for international trade in food sovereignty? J Peasant Stud 1–20. doi:10.1080/03066150.2013.876995

  24. Buttel FH (2003) Envisioning the future development of farming in the USA: agroecology between extinction and multifunctionality? New Directions in Agroecology Research and Education

  25. Cantor A, Strochlic R (2009) Breaking down market barriers for small and mid-sized organic growers. California Institute for Rural Studies

  26. Cargill (2010) Cargill, Meyer natural foods enter into joint “Go-to-Market” agreement. http://www.cargill.com/news/releases/2010/NA3030344.jsp. Accessed May 2014

  27. Challinor AJ, Watson J, Lobell DB et al (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291. doi:10.1038/NCLIMATE2153

    Article  Google Scholar 

  28. Clapp J, Fuchs D (2009) Corporate power in global agrifood governance. MIT Press, US

    Google Scholar 

  29. Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  30. Cote M, Nightingale AJ (2011) Resilience thinking meets social theory: situating social change in socio-ecological systems (SES) research. Prog Hum Geogr 36:475–489. doi:10.1177/0309132511425708

    Article  Google Scholar 

  31. Da Silva CA (2005) The growing role of contract farming in Agri-Food Systems development: drivers, theory and practice. FAO, Rome

  32. Davis M, Waters T (2014) Killer pig virus wipes out more than 10 percent of nation’s hogs, causing spike in pork prices. In: Reuters. http://www.huffingtonpost.com/2014/04/27/pig-virus-wipes-out-nations-hogs_n_5221471.html. Accessed May 2014

  33. Davis AS, Hill JD, Chase CA et al (2012) Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One 7, e47149. doi:10.1371/journal.pone.0047149

    CAS  Article  Google Scholar 

  34. DeLind LB, Howard PH (2008) Safe at any scale? Food scares, food regulation, and scaled alternatives. Agric Hum Values 25:301–317. doi:10.1007/s10460-007-9112-y

    Article  Google Scholar 

  35. Desjardins E, MacRae R, Schumilas T (2009) Linking future population food requirements for health with local production in Waterloo Region, Canada. Agric Hum Values 27:129–140. doi:10.1007/s10460-009-9204-y

    Article  Google Scholar 

  36. Emel J, Neo H (2011) Killing for profit: global livestock industries and their socio-ecological implications. In: Peet R, Watts M, Robbins P (eds) Global political ecology. Routledge, Florence, pp 82–96

    Google Scholar 

  37. Engle NL, Bremond A, Malone EL, Moss RH (2013) Towards a resilience indicator framework for making climate-change adaptation decisions. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-013-9475-x

    Google Scholar 

  38. Ericksen PJ (2008) Conceptualizing food systems for global environmental change research. Glob Environ Chang Policy Dimens 18:234–245. doi:10.1016/j.gloenvcha.2007.09.002

    Article  Google Scholar 

  39. ETC. Group (2013) Putting the cartel before the horse … and farm, seeds, soil, peasants, etc. Communique# 111. ETC Group, Ottowa

  40. Farmdoc (2014) Marketing and outlook: U.S. Price History. In: Univ. Illinois. http://www.farmdoc.illinois.edu/manage/uspricehistory/us_price_history.html. Accessed May 2014

  41. Feagan R (2007) The place of food: mapping out the “local” in local food systems. Prog Hum Geogr 31:23–42. doi:10.1177/0309132507073527

    Article  Google Scholar 

  42. Folke C (2006) Resilience: the emergence of a perspective for social–ecological systems analyses. Glob Environ Chang 16(3):253–267

  43. Fragoso C, Brown GG, Patrón JC et al (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Appl Soil Ecol 6:17–35. doi:10.1016/S0929-1393(96)00154-0

    Article  Google Scholar 

  44. Fraser EDG (2003) Social vulnerability and ecological fragility: building bridges between social and Natural Sciences Using the Irish Potato Famine as a case study. Conserv Ecol 7(2):9

  45. Fraser E (2006) Crop diversification and trade liberalization: linking global trade and local management through a regional case study. Agric Hum Values 23:271–281. doi:10.1007/s10460-006-9005-5

    Article  Google Scholar 

  46. Fraser E (2007) Travelling in antique lands: using past famines to develop an adaptability/resilience framework to identify food systems vulnerable to climate change. Clim Change 83:495–514. doi:10.1007/s10584-007-9240-9

    Article  Google Scholar 

  47. Fraser E, Mabee W, Figge F (2005) A framework for assessing the vulnerability of food systems to future shocks. Futures 37:1–30

    Article  Google Scholar 

  48. Fraser EDG, Dougill AJ, Hubacek K et al (2011) Assessing vulnerability to climate change in dryland livelihood systems: conceptual challenges and interdisciplinary solutions. Ecol Soc 16:3

  49. Fridell G (2004) The fair trade network in historical perspective. Can J Dev Stud Can d’études du développement 25:411–428. doi:10.1080/02255189.2004.9668986

    Article  Google Scholar 

  50. Friedland WH, Barton AE, Thomas RJ (1981) Manufacturing green gold: capital, labor, and technology in the lettuce industry. Cambridge University Press, Cambridge

    Google Scholar 

  51. Fulponi L (2006) Private voluntary standards in the food system: the perspective of major food retailers in OECD countries. Food Policy 31:1–13. doi:10.1016/j.foodpol.2005.06.006

    Article  Google Scholar 

  52. Geisseler D, Horwath WR (2013) Lettuce production in California. Fertilizer Research and Education Program. http://apps.cdfa.ca.gov/frep/docs/Lettuce_Production_CA.pdf. Accessed May 2014

  53. Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439

    Article  Google Scholar 

  54. Gunderson LH, Holling CS (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DC

    Google Scholar 

  55. Hammond B, Berardi G, Green R (2013) Resilience in agriculture: small- and medium-sized farms in Northwest Washington State. Agroecol Sustain Food Syst 37:316–339. doi:10.1080/10440046.2012.746251

    Article  Google Scholar 

  56. Hanrahan CE, Canada C, Banks BA (2011) U.S. Agricultural Trade: trends, composition, direction, and policy. Nova Science, Washington, DC

  57. Hartz T, Miyao G, Mickler J et al (2008) Processing tomato production in California. UCANR, University of California

  58. Hinrichs CC (2014) Transitions to sustainability: a change in thinking about food systems change? Agric Hum Values 1–13. doi:10.1007/s10460-014-9479-5

  59. Hooper DU, Chapin FS III, Ewel JJ, Hector A et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  60. IPCC (2014) IPCC WGII AR5 chapter 7: food security and food production systems. Cambridge University Press, Cambridge, pp 1–82

    Google Scholar 

  61. Jackson W (2002) Natural systems agriculture: a truly radical alternative. Agric Ecosyst Environ 88:111–117

    Article  Google Scholar 

  62. Jaffee D, Howard PH (2009) Corporate cooptation of organic and fair trade standards. Agric Hum Values 27:387–399. doi:10.1007/s10460-009-9231-8

    Article  Google Scholar 

  63. Johnstone S, Mazo J (2011) Global warming and the Arab Spring. Survival (Lond) 53:11–17. doi:10.1080/00396338.2011.571006

    Article  Google Scholar 

  64. Juma C, Tabo R, Wilson K, Conway G (2013) Innovation for sustainable intensification in Africa. The Montpellier Panel, Agriculture for Impact, London

  65. Khoury CK, Bjorkman AD, Dempewolf H et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111:4001–4006. doi:10.1073/pnas.1313490111

    CAS  Article  Google Scholar 

  66. Kogan F, Guo W (2014) Early twenty-first-century droughts during the warmest climate. Geomatics Nat Hazards Risk 1–11. doi:10.1080/19475705.2013.878399

  67. Liebman M, Mohler CL, Staver CP (2001) Ecological management of agricultural weeds. Cambridge University Press, Cambridge

    Google Scholar 

  68. Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193. doi:10.1525/bio.2011.61.3.4

    Article  Google Scholar 

  69. Lynch D (2009) Environmental impacts of organic agriculture: a Canadian perspective. Can J Plant Sci 89:621–628

    CAS  Article  Google Scholar 

  70. MacRae RJ, Lynch D, Martin RC (2010) Improving energy efficiency and GHG mitigation potentials in Canadian organic farming systems. J Sustain Agric 34:549–580. doi:10.1080/10440046.2010.484704

    Article  Google Scholar 

  71. MacRae R, Cuddeford V, Young SB, Matsubuchi-Shaw M (2013) The food system and climate change: an exploration of emerging strategies to reduce GHG emissions in Canada. Agroecol Sustain Food Syst 37:933–963. doi:10.1080/21683565.2013.774302

    Article  Google Scholar 

  72. Marsden T (1997) Creating space for food: the distinctiveness of recent agrarian development. In: Goodman D, Watts M (eds) Globalising food: agrarian questions and global restructuring. Routledge, New York, pp 122–136

    Google Scholar 

  73. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(80-):504–509. doi:10.1126/science.277.5325.504

    CAS  Article  Google Scholar 

  74. McMichael P (2010) The world food crisis in historical perspective. In: Magdoff F, Tokar B (eds) Agriculture and food in crisis: conflict, resistance, and renewal. NYU Press, New York

    Google Scholar 

  75. McMichael P (2013) Value-chain agriculture and debt relations: contradictory outcomes. Third World Q 34:671–690. doi:10.1080/01436597.2013.786290

    Article  Google Scholar 

  76. Miewald C, Ostry A, Hodgson S (2013) Food safety at the small scale: the case of meat inspection regulations in British Columbia’s rural and remote communities. J Rural Stud 32:93–102. doi:10.1016/j.jrurstud.2013.04.010

    Article  Google Scholar 

  77. Mutoko MC, Hein L, Shisanya C (2014) Farm diversity, resource use efficiency and sustainable land management in the western highlands of Kenya. J Rural Stud 36:108–120. doi:10.1016/j.jrurstud.2014.07.006

    Article  Google Scholar 

  78. NASS (2009) National agricultural statistics service. http://www.nass.usda.gov/Publications/Ag_Statistics/2009/. Accessed May 2014

  79. National Farmers Union (2010) Losing our grip: how a Corporate Farmland buy-up, rising farm debt, and agribusiness financing of inputs threaten family farms and food sovereignty. National Farmers Union, Saskatoon, Saskatchewan

  80. National Farmers Union (2013) Farms, farmers and agriculture in Ontario. National Farmers Union, Saskatoon, Saskatchewan

  81. O’Brien K (2012) Global environmental change II: from adaptation to deliberate transformation. Prog Hum Geogr 36:667–676. doi:10.1177/0309132511425767

    Article  Google Scholar 

  82. Osteen C, Gottlieb J, Vasavada U (2012) Agricultural resources and environmental indicators. USDA-ERS Economic Information Bulletin 98, Washington, DC

  83. Pelling M (2011) Adaptation to climate change: from resilience to transformation. Routledge, London and New York

  84. Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18

    Article  Google Scholar 

  85. Pimentel D, Williamson S, Alexander CE et al (2008) Reducing energy inputs in the US food system. Hum Ecol 36:459–471. doi:10.1007/s10745-008-9184-3

    Article  Google Scholar 

  86. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007

    Article  Google Scholar 

  87. Pritchard B, Burch D (2003) Agri-food globalization in perspective: international restructuring in the processing tomato industry. Ashgate, Aldershot

  88. Schnepf R (2014) U.S. farm income

  89. Seccombe W (2007) A home-grown strategy for Ontario agriculture a new deal for farmers, a new relationship with consumers. Toronto Food Policy Council, Toronto

  90. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232. doi:10.1038/nature11069

    CAS  Article  Google Scholar 

  91. Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Glob Environ Chang 16:282–292. doi:10.1016/j.gloenvcha.2006.03.008

    Article  Google Scholar 

  92. Smithers J, Johnson P (2004) The dynamics of family farming in North Huron County, Ontario. Part I. Development trajectories. Can Geogr 48:191–208. doi:10.1111/j.0008-3658.2004.00055.x

    Article  Google Scholar 

  93. Statistics Canada (2011) 2011 Census of agriculture. Government of Canada, Ottawa

  94. Tilman D, Reich PB, Knops J et al (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. doi:10.1126/science.1060391

    CAS  Article  Google Scholar 

  95. Tilman D, Cassman KG, Matson PA et al (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  Article  Google Scholar 

  96. Tomanio J (2014) Reinvigorating public plant breeding: seeds & breeds | RAFI. In: Rural Adv. Found. Int. http://rafiusa.org/issues/reinvigorating-public-plant-and-animal-breeding/. Accessed 17 Mar 2015

  97. Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  98. USDA (2014) Assets, debt, and wealth. In: United States Dep. Agric. Econ. Res. Serv

  99. USEPA (2013) Economic overview. In: U.S. Environ. Prot. Agency

  100. Van der Ploeg JD (2006) Agricultural production in crisis. In: Cloke P, Marsden T, Mooney P (eds) Handbook of rural studies. Sage Publications, Thousand Oaks, pp 258–271

    Google Scholar 

  101. Vandermeer J, Van Noordwijk M, Anderson J et al (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22. doi:10.1016/S0167-8809(97)00150-3

    Article  Google Scholar 

  102. Watts MJ, Bohle HJ (1993) The space of vulnerability: the causal structure of hunger. Prog Hum Geogr 17:43–68. doi:10.1177/030913259301700103

    Article  Google Scholar 

  103. Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42:3508–3513

    CAS  Article  Google Scholar 

  104. Weis T (2010) The accelerating biophysical contradictions of industrial capitalist agriculture. J Agrar Chang 10:315–341. doi:10.1111/j.1471-0366.2010.00273.x

    Article  Google Scholar 

  105. Weis T (2012) A political ecology approach to industrial food production. In: Koc M, Sumner J, Winson T (eds) Critical perspectives in food studies. Oxford University Press, Toronto, pp 104–121

    Google Scholar 

  106. Winson A (1993) The intimate commodity: food and the development of the agro-industrial complex in Canada. Garamond Press, Aurora

    Google Scholar 

  107. Winson A (2013) The Industrial Diet: the degradation of food and the struggle for healthy eating. UBC Press and New York University Press, Vancouver and New York

  108. Woodall P, Lynn BC, Halverson (2011) Monopoly meat: a discussion on the market concentration in relation to meat packing. George Washington University, Washington, DC

    Google Scholar 

Download references

Acknowledgments

The support of the Social Sciences and Humanities Research Council (SSHRC) and the Vanier Scholarship program are gratefully acknowledged. This paper benefits greatly from the review process, and so, we acknowledge the blind peer reviewers who provided insights and input to an earlier draft.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah Rotz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rotz, S., Fraser, E.D.G. Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability. J Environ Stud Sci 5, 459–473 (2015). https://doi.org/10.1007/s13412-015-0277-1

Download citation

Keywords

  • Climate change
  • Resilience
  • Adaptive capacity
  • Agriculture
  • Farming
  • Industrial food system