Skip to main content

Advertisement

Log in

Effects of exercises and manual therapy on nerve conduction studies of lower limb in patients with diabetes and diabetic peripheral neuropathy: A systematic review

  • Review Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Diabetes and related peripheral neuropathy result in various sensory and motor complications. Such changes are documented early and more precisely in nerve conduction studies than in clinical evaluation and quantitative sensory testing. Different exercises and mobilization also affect the same differently.

Objective

This review aimed to compile the current evidence on the effectiveness of exercises and manual therapy on nerve conduction studies of lower limbs in patients with diabetes and diabetic peripheral neuropathy and to evaluate the underlying mechanisms.

Methods

Studies that examined the effects of different exercises and manual therapy on nerve conduction studies of lower limbs in patients with diabetes mellitus and diabetic peripheral neuropathy were searched on available databases. The PRISMA statement was followed. Quality check was done using the Pedro scale.

Results

Thirteen studies matched the inclusion criteria. Interventions included moderate-intensity aerobic exercises, resistance exercises, tai chi exercises, sensorimotor and gait training, neurodynamic mobilization, and a combination of aerobics and resistance training.

Conclusion

The present systematic review suggests that 8 to 12 weeks of physical exercise improves nerve conduction velocity of the motor tibial, peroneal nerve, and sensory sural nerve in diabetes with or without peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CMAP:

Compound muscle action potential

DM:

Diabetes mellitus

DPN:

Diabetic peripheral neuropathy

IENFD:

Intra epidermal nerve fiber density

NAPA:

Nerve action potential amplitude

NCS:

Nerve conduction studies

NCV:

Nerve conduction velocity

SNAP:

Sensory nerve action potential

PEDRO:

Physiotherapy evidence database

PRISMA:

Preferred reporting items for systematic reviews and meta-analysis

PICOS:

Population, intervention, comparison, outcomes, study design

TENS:

Transcutaneous electrical nerve stimulation

ADA:

American diabetes association

HbA1c:

Hemoglobin A1c

BMI:

Body mass index

QST:

Quantitative sensory testing

References

  1. Aldana -yovera M, Velasquez-Rimachi V, Huerta-Rosario A, More-Yupanqui MD, Osores-Flores M, Espinoza R, et al. Prevalence and incidence of diabetic peripheral neuropathy in Latin America and the Caribbean: a systematic review and metaanalysis. PLoS ONE. 2021;16:1–29.

    Article  Google Scholar 

  2. Edwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic neuropathy: mechanisms to management. Pharmacol Ther. 2008;120(1):1–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahmad I, Noohu MM, Verma S, Singla D, Hussain ME. Effect of sensorimotor training on balance measures and proprioception among middle and older age adults with diabetic peripheral neuropathy. Gait Posture. 2019;74:114–20. https://doi.org/10.1016/j.gaitpost.2019.08.018.

    Article  PubMed  Google Scholar 

  4. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Prim. 2019;5(1):41. https://doi.org/10.1038/s41572-019-0092-1.

    Article  PubMed  Google Scholar 

  5. Janghorbani M, Rezvanian H, Kachooei A, Ghorbani A, Chitsaz A, Izadi F, et al. Peripheral neuropathy in type 2 diabetes mellitus in Isfahan, Iran: prevalence and risk factors. Acta Neurol Scand. 2006;114(6):384–91.

    Article  CAS  PubMed  Google Scholar 

  6. Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol. 2021;17(7):400–20. https://doi.org/10.1038/s41574-021-00496-z.

    Article  PubMed  Google Scholar 

  7. Pai YW, Tang CL, Lin CH, Lin SY, Lee IT, Chang MH. Glycaemic control for painful diabetic peripheral neuropathy is more than fasting plasma glucose and glycated haemoglobin. Diabetes Metab. 2021;47(1):101158. https://doi.org/10.1016/j.diabet.2020.04.004.

    Article  CAS  PubMed  Google Scholar 

  8. Amato Nesbit S, Sharma R, Waldfogel JM, Zhang A, Bennett WL, Yeh HC, et al. Non-pharmacologic treatments for symptoms of diabetic peripheral neuropathy: a systematic review. Curr Med Res Opin. 2019;35(1):15–25. https://doi.org/10.1080/03007995.2018.1497958.

    Article  PubMed  Google Scholar 

  9. Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles-a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia. 2009;52(6):1182–91.

    Article  CAS  PubMed  Google Scholar 

  10. Allen MD, Kimpinski K, Doherty TJ, Rice CL. Length dependent loss of motor axons and altered motor unit properties in human diabetic polyneuropathy. Clin Neurophysiol. 2014;125(4):836–43.

    Article  PubMed  Google Scholar 

  11. Parasoglou P, Rao S, Slade JM. Declining skeletal muscle function in diabetic peripheral neuropathy. Clin Ther. 2017;39(6):1085–103. https://doi.org/10.1016/j.clinthera.2017.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm. 2020;127(4):589–624. https://doi.org/10.1007/s00702-020-02145-7.

    Article  PubMed  Google Scholar 

  13. Yagihashi S, Yamagishi SI, Wada R. Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. Diabetes Res Clin Pract. 2007;77(3 SUPPL.):184–9.

    Article  Google Scholar 

  14. van Dam PS. Oxidative stress and diabetic neuropathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2002;18(3):176–84. https://doi.org/10.1002/dmrr.287.

    Article  Google Scholar 

  15. Alam U, Fawwad A, Shaheen F, Tahir B, Basit A, Malik RA. Improvement in neuropathy specific quality of life in patients with diabetes after vitamin D supplementation. J Diabetes Res. 2017;7928083. https://doi.org/10.1155/2017/7928083

  16. Khan KS, Andersen H. The impact of diabetic neuropathy on activities of daily living, postural balance and risk of falls - a systematic review. J Diabetes Sci Technol. 2022;16(2):289–94.

    Article  PubMed  Google Scholar 

  17. Ghanavati T, ShaterzadehYazdi MJ, Goharpey S, Arastoo AA. Functional balance in elderly with diabetic neuropathy. Diabetes Res Clin Pract. 2012;96(1):24–8. https://doi.org/10.1016/j.diabres.2011.10.041.

    Article  PubMed  Google Scholar 

  18. Boulton AJM. The diabetic foot. Medicine. 2019;47(2):100–5. https://doi.org/10.1016/j.mpmed.2018.11.001.

    Article  Google Scholar 

  19. Van Schie CH. Neuropathy: mobility and quality of life. Diabetes/Metab Res Rev. 2008;24(Suppl 1):S45–51. https://doi.org/10.1002/dmrr.856.

    Article  PubMed  Google Scholar 

  20. Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, Walker J, Tesfaye S. Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019;7(12):938–48.

    Article  PubMed  Google Scholar 

  21. Mscot PH, Deshpande N. Falls and balance impairments in older adults with type diabetes thinking beyond diabetic peripheral neuropathy. 2016;40(1):6–9. https://doi.org/10.1016/j.jcjd.2015.08.005.

    Article  Google Scholar 

  22. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American diabetes association. Diabetes Care. 2017;40(1):136–54.

    Article  CAS  PubMed  Google Scholar 

  23. García-Molina L, Lewis-Mikhael AM, Riquelme-Gallego B, Cano-Ibáñez N, Oliveras-López MJ, Bueno-Cavanillas A. Improving type 2 diabetes mellitus glycaemic control through lifestyle modification implementing diet intervention: a systematic review and meta-analysis. Eur J Nutr. 2020;59(4):1313–28. https://doi.org/10.1007/s00394-019-02147-6.

    Article  CAS  PubMed  Google Scholar 

  24. Chiles NS, Phillips CL, Volpato S, Bandinelli S. Diabetes, peripheral neuropathy, and lower extremity function. NIH Public Access. 2015;61(6):515–25.

    Google Scholar 

  25. Galiero R, Ricciardi D, Pafundi PC, Todisco V, Tedeschi G, Cirillo G, et al. Whole plantar nerve conduction study: a new tool for early diagnosis of peripheral diabetic neuropathy. Diabetes Res Clin Pract. 2021;176:108856. https://doi.org/10.1016/j.diabres.2021.108856.

    Article  PubMed  Google Scholar 

  26. Kohara N, Kimura J, Kaji R, Goto Y, Ishii J, Takiguchi M, et al. F-wave latency serves as the most reproducible measure in nerve conduction studies of diabetic polyneuropathy: Multicentre analysis in healthy subjects and patients with diabetic polyneuropathy. Diabetologia. 2000;43(7):915–21.

    Article  CAS  PubMed  Google Scholar 

  27. Weisman A, Bril V, Ngo M, Lovblom LE, Halpern EM, Orszag A, et al. Identification and prediction of diabetic sensorimotor polyneuropathy using individual and simple combinations of nerve conduction study parameters. PLoS ONE. 2013;8(3):1–9.

    Article  Google Scholar 

  28. Mackel R, Brink E. Conduction of neural impulses in diabetic neuropathy. Chem Biol. 2003;10:161–8.

    Google Scholar 

  29. Hung JW, Liou CW, Wang PW, Yeh SH, Lin LW, Lo SK, et al. Effect of 12-week tai chi chuan exercise on peripheral nerve modulation in patients with type 2 diabetes mellitus. J Rehabil Med. 2009;41(11):924–9.

    Article  PubMed  Google Scholar 

  30. Hogikyan RV, Wald JJ, Feldman EL, Greene DA, Halter JB, Supiano MA. Acute effects of adrenergic-mediated ischemia on nerve conduction in subjects with type 2 diabetes. Metabolism. 1999;48(4):495–500.

    Article  CAS  PubMed  Google Scholar 

  31. De Souza RJ, De Souza A, Nagvekar MD. Nerve conduction studies in diabetics presymptomatic and symptomatic for diabetic polyneuropathy. J Diabetes Complications. 2015;29(6):811–7. https://doi.org/10.1016/j.jdiacomp.2015.05.009.

    Article  PubMed  Google Scholar 

  32. Balducci S, Iacobellis G, Parisi L, Di Biase N, Calandriello E, Leonetti F, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complications. 2006;20(4):216–23.

    Article  PubMed  Google Scholar 

  33. Dixit S, Maiya AG, Shastry BA. Effect of aerobic exercise on peripheral nerve functions of population with diabetic peripheral neuropathy in type 2 diabetes: A single blind, parallel group randomized controlled trial. J Diabetes Complications. 2014;28(3):332–9. https://doi.org/10.1016/j.jdiacomp.2013.12.006.

    Article  PubMed  Google Scholar 

  34. Serry ZMH, Mossa G, Elhabashy H, Elsayed S, Elhadidy R, Azmy RM, et al. Transcutaneous nerve stimulation versus aerobic exercise in diabetic neuropathy. Egypt J Neurol Psychiatry Neurosurg. 2016;53(2):124–9.

    Article  Google Scholar 

  35. Gholami F, Nikookheslat S, Salekzamani Y, Boule N, Jafari A. Effect of aerobic training on nerve conduction in men with type 2 diabetes and peripheral neuropathy: a randomized controlled trial. Neurophysiol Clin. 2018;48(4):195–202. https://doi.org/10.1016/j.neucli.2018.03.001.

    Article  PubMed  Google Scholar 

  36. Ahmad I, Verma S, Noohu MM, Shareef MY, Ejaz HM. Sensorimotor and gait training improves proprioception, nerve function, and muscular activation in patients with diabetic peripheral neuropathy: a randomized control trial. J Musculoskelet Neuronal Interact. 2020;20(2):234–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stubbs EB, Fisher MA, Miller CM, Jelinek C, Butler J, McBurney C, et al. Randomized controlled trial of physical exercise in diabetic veterans with length-dependent distal symmetric polyneuropathy. Front Neurosci. 2019;13:51. https://doi.org/10.3389/fnins.2019.0005.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gholami F, Khaki R, Mirzaei B, Howatson G. Resistance training improves nerve conduction and arterial stiffness in older adults with diabetic distal symmetrical polyneuropathy: a randomized controlled trial. Exp Gerontol. 2021;153:111481. https://doi.org/10.1016/j.exger.2021.111481.

    Article  CAS  PubMed  Google Scholar 

  39. Singleton JR, Marcus RL, Jackson JE, Lessard M, Graham TE, Smith AG. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann Clin Transl Neurol. 2014;1(10):844–9. https://doi.org/10.1002/acn3.125.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alsubiheen A, Petrofsky J, Daher N, Lohman E, Balbas E, Lee H. Tai chi with mental imagery theory improves soleus H-reflex and nerve conduction velocity in patients with type 2 diabetes. Complement Ther Med. 2017;31:59–64. https://doi.org/10.1016/j.ctim.2017.01.005.

    Article  PubMed  Google Scholar 

  41. Azizi S, Najafi S, Rezasoltani Z, Sanati E, Zamani N, Dadarkhah A. Effects of aerobic exercise on electrophysiological features of diabetic peripheral neuropathy: single-blind clinical trial. Top Geriatr Rehabil. 2019;35(2):164–9.

    Article  Google Scholar 

  42. Doshi MK, Singarvelan RM. Effect of tibial nerve mobilization on nerve conduction velocity in diabetic neuropathy patient. Int J Heal Sci Res. 2019;9(5):218–24.

    Google Scholar 

  43. Kluding PM, Pasnoor M, Singh R, Jernigan S, Farmer K, Rucker J, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications. 2012;26(5):424–9. https://doi.org/10.1016/j.jdiacomp.2012.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kakrani AL, Gokhale VS, Vohra KV, Chaudhary N. Clinical and nerve conduction study correlation in patients of diabetic neuropathy. J Assoc Physicians India. 2014;62(1):24–7.

    CAS  PubMed  Google Scholar 

  45. Dyck PJ, Overland CJ, Low PA, Litchy WJ, Davies JL, Dyck PJB, et al. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: CI vs. NPhys trial Muscle and Nerve. 2010;42(2):157–64.

    Article  PubMed  Google Scholar 

  46. Malik RA, Tesfaye S, Newrick PG, Walker D, Rajbhandari SM, Siddique I, et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia. 2005;48(3):578–85.

    Article  CAS  PubMed  Google Scholar 

  47. Perkins BA, Bril V. Diabetic neuropathy: a review emphasizing diagnostic methods. Clin Neurophysiol. 2003;114(7):1167–75.

    Article  PubMed  Google Scholar 

  48. Fuller AA, Singleton JR, Smith AG, Marcus RL. Exercise in type 2 diabetic peripheral neuropathy. Curr Geriatr Reports. 2016;5(3):150–9. https://doi.org/10.1007/s13670-016-0177-6.

    Article  Google Scholar 

  49. Valls-Canals J, Povedano M, Montero J, Pradas J. Diabetic polyneuropathy. Axonal or demyelinating? Electromyography and clinical neurophysiology. 2002;42(1):3–6.

    CAS  PubMed  Google Scholar 

  50. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    Article  PubMed  Google Scholar 

  51. Cameron NE, Eaton SEM, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44(11):1973–88.

    Article  CAS  PubMed  Google Scholar 

  52. Fuchsjäger-Mayrl G, Pleiner J, Wiesingen GF, Sieder AE, Quittan M, Nuhr MJ, et al. Endothelial function in patients with type 1 diabetes. Diabetes Care. 2002;25(10):1795–801.

    Article  PubMed  Google Scholar 

  53. Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diabetes Metab Res Rev. 2016;32(1):40–50.

    Article  PubMed  Google Scholar 

  54. Sylantiev C, Schwartz R, Chapman J, Buchman AS. Medial plantar nerve testing facilitates identification of polyneuropathy. Muscle Nerve. 2008;38(6):1595–8.

    Article  PubMed  Google Scholar 

  55. Løseth S, Nebuchennykh M, Stålberg E, Mellgren SI. Medial plantar nerve conduction studies in healthy controls and diabetics. Clin Neurophysiol. 2007;118(5):1155–61.

    Article  PubMed  Google Scholar 

  56. Frigeni B, Cacciavillani M, Ermani M, Briani C, Alberti P, Ferrarese C, et al. Neurophysiological examination of dorsal sural nerve. Muscle Nerve. 2012;46(6):891–4.

    Article  Google Scholar 

  57. Kural MA, Karlsson P, Pugdahl K, Isak B, Fuglsang-Frederiksen A, Tankisi H. Diagnostic utility of distal nerve conduction studies and sural near-nerve needle recording in polyneuropathy. Clin Neurophysiol. 2017;128(9):1590–5. https://doi.org/10.1016/j.clinph.2017.06.031.

    Article  PubMed  Google Scholar 

  58. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.

    Article  PubMed  Google Scholar 

  59. Lee JH, Lee R, Hwang MH, Hamilton MT, Park Y. The effects of exercise on vascular endothelial function in type 2 diabetes: a systematic review and meta-analysis Fred DiMenna. Diabetol Metab Syndr. 2018;10(1):1–14. https://doi.org/10.1186/s13098-018-0316-7.

    Article  CAS  Google Scholar 

  60. Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol Hear Circ Physiol. 1999;276(45–2):679–85.

    Article  Google Scholar 

  61. Griffin JW, Thompson WJ. Biology and pathology of nonmyelinating schwann cells. Glia. 2008;56(14):1518–31.

    Article  PubMed  Google Scholar 

  62. Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–93. https://doi.org/10.2337/dc10-1303.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hortobágyi T, Granacher U, Fernandez-del-Olmo M, Howatson G, Manca A, Deriu F, et al. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci Biobehav Rev. 2020;2021(122):79–91.

    Google Scholar 

  64. Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci Lett. 2010;479(2):161–5. https://doi.org/10.1016/j.neulet.2010.05.058.

    Article  CAS  PubMed  Google Scholar 

  65. Posadzki P, Jacques S. Tai chi and meditation: a conceptual (re)synthesis? J Holist Nurs. 2009;27(2):103–14.

    Article  PubMed  Google Scholar 

  66. Lan C, Lai JS, Chen SY. Tai chi chuan: an ancient wisdom on exercise and health promotion. Sport Med. 2002;32(4):217–24.

    Article  Google Scholar 

  67. Dickstein R, Deutsch JE. Motor imagery in physical therapist practice. Phys Ther. 2007;87(7):942–53.

    Article  PubMed  Google Scholar 

  68. Santana HS, Fernandes de Oliveira IA, Lima ÊM, Medrado ARAP, Nunes Sa K, Martinez AMB, et al. Neurodynamic mobilization and peripheral nerve regeneration: a narrative review. Int J Neurorehabilitation. 2015;02:2. https://doi.org/10.4172/2376-0281.1000163

  69. Da Silva JT, Dos Santos FM, Giardini AC, De Oliveira MD, De Oliveira ME, Ciena AP, et al. Neural mobilization promotes nerve regeneration by nerve growth factor and myelin protein zero increased after sciatic nerve injury. Growth Factors. 2015;33(1):8–13.

    Article  PubMed  Google Scholar 

  70. Singh PP, Bindra S, Singh S, Aggarwal R, Singh J. Effect of nerve mobilization on vibration perception threshold in diabetic peripheral neuropathy. Indian J Physiother Occup Ther. 2012;6(3):195–201.

    Google Scholar 

  71. Kumar PS, Adhikari P, Prabhu MM. Efficacy of tibial nerve neurodynamic mobilization for neuropathic pain in type II diabetes mellitus-a randomized controlled trial. Physiotherapy and Occupational Therapy. 2011;5(4):189–92.

    Google Scholar 

  72. Gilbert KK, Roger James C, Apte G, Brown C, Sizer PS, Brismeé JM, et al. Effects of simulated neural mobilization on fluid movement in cadaveric peripheral nerve sections: implications for the treatment of neuropathic pain and dysfunction. J Man Manip Ther. 2015;23(4):219–25. https://doi.org/10.1179/2042618614Y.0000000094.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gilbert KK, Smith MP, Sobczak S, James CR, Sizer PS, Brismée J-M. Effects of lower limb neurodynamic mobilization on intraneural fluid dispersion of the fourth lumbar nerve root: an unembalmed cadaveric investigation. J Man Manip Ther. 2015;23(5):239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhu GC, Tsai KL, Chen YW, Hung CH. Neural mobilization attenuates mechanical allodynia and decreases proinflammatory cytokine concentrations in rats with painful diabetic neuropathy. Physical Therapy & Rehabilitation Journal. 2018;98(4):214–22. https://doi.org/10.1093/ptj/pzx124.

    Article  Google Scholar 

  75. Page P. Sensorimotor training: A “global” approach for balance training. J Bodyw Mov Ther. 2006;10(1):77–84.

    Article  Google Scholar 

  76. Abdelbasset WK, Elsayed SH, Nambi G, Tantawy SA, Kamel DM, Eid MM, et al. Response to Letter to the Editor on “Potential efficacy of sensorimotor exercise program on pain, proprioception, mobility, and quality of life in diabetic patients with foot burns: A 12-week randomized control study.” Burns. 2021;47(5):1204–5.

    Article  PubMed  Google Scholar 

  77. Ahmad I, Verma S, Noohu MM, Hussain ME. Effect of sensorimotor training on spatiotemporal parameters of gait among middle and older age adults with diabetic peripheral neuropathy. Somatosens Mot Res. 2021;38(3):230–40. https://doi.org/10.1080/08990220.2021.1955671.

    Article  PubMed  Google Scholar 

  78. Hohman TC, Cotter MA, Cameron NE. ATP-sensitive K+ channel effects on nerve function, Na+, K+ ATPase, and glutathione in diabetic rats. Eur J Pharmacol. 2000;397(2–3):335–41.

    Article  CAS  PubMed  Google Scholar 

  79. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11(6):521–34. https://doi.org/10.1016/S1474-4422(12)70065-0.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vincent AM, Russell JW, Low P, Feldman EVAL, Arbor A. Oxidative stress in the pathogenesis of diabetic neuropathy. 2004;25(4):612–28.

    CAS  Google Scholar 

  82. Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol. 2009;219(1):258–65.

    Article  PubMed  Google Scholar 

  83. Vaynman S, Gomez-pinilla F. License to run: exercise impacts functional plasticity in the Intact and Injured Central Nervous System by Using Neurotrophins. Neurorehabil Neural Repair. 2005;19(4):283–95. https://doi.org/10.1177/1545968305280753.

    Article  PubMed  Google Scholar 

  84. Wilhelm JC, Xu M, Cucoranu D, Chmielewski S, Holmes T, Lau KS, et al. Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration. J Neurosci. 2012;32(14):5002–9. https://doi.org/10.1523/JNEUROSCI.1411-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park JS, Höke A. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors. PLoS ONE. 2014;9(3):1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J., Ahmad, I. & Singh, A.K.C. Effects of exercises and manual therapy on nerve conduction studies of lower limb in patients with diabetes and diabetic peripheral neuropathy: A systematic review. Int J Diabetes Dev Ctries (2023). https://doi.org/10.1007/s13410-023-01258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13410-023-01258-5

Keywords

Navigation