Skip to main content

Advertisement

Log in

Triglyceride variability affects diabetic kidney disease in middle-aged and elderly people with type 2 diabetes mellitus in the Guangxi Zhuang population

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Objective

Dyslipidemia has been implicated in the development and progression of renal disease. To our knowledge, no reports have demonstrated an association between blood lipid level variability and diabetic kidney disease (DKD) in China. Our objective is to investigate the influence of variability in triglyceride levels on DKD incidence in a middle-aged to elderly Chinese Zhuang population with type 2 diabetes mellitus.

Methods

In all, 276 participants with type 2 diabetes mellitus aged ≥ 45 years were followed up for 2 ~ 5 years and the results were analyzed. Variability in their triglycerides was evaluated using standard deviation, coefficient of variation, and variability independent of the mean, and the mean was calculated, and the outcome was DKD. We applied a Cox proportional hazard model to determine the relationship between variability TG levels and DKD.

Results

During the mean 3-year follow-up, 74 participants developed DKD. In a multivariable cox regression model, triglyceride variability was a significant risk factor for DKD. The hazard ratios (HRs) (95% confidence intervals [CI]) for each increase in SD, CV, and VIM of triglycerides by 1 SD were 1.257 (1.038–1.522), 1.525 (1.059–2.195), and 1.007 (1.004–1.011), respectively. Compared to the lowest quartiles of SD of triglycerides, the HRs (95%CI) were 1.858 (1.359–2.542), 1.881 (1.354–2.612), and 1.858 (1.343–2.570) in Q2, Q3, and Q4. Consistency was seen when CV and VIM were used for calculating variability.

Conclusion

High TG variability in middle-aged and elderly Chinese Zhuang patients with type 2 diabetes mellitus was associated with a significantly increased risk of developing DKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pereira PR, Carrageta DF, Oliveira PF, et al. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease [J]. Med Res Rev. 2022;42:1518–44.

    Article  PubMed  Google Scholar 

  2. Gembillo G, Ingrasciotta Y, Crisafulli S, et al. Kidney disease in diabetic patients: from pathophysiology to pharmacological aspects with a focus on therapeutic inertia [J]. Int J Mol Sci. 2021;22(9).

  3. Zhang L, Long J, Jiang W, et al. Trends in Chronic Kidney Disease in China [J]. N Engl J Med. 2016;375(9):905–6.

    Article  PubMed  Google Scholar 

  4. American Diabetes A. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2020 [J]. Diabetes Care. 2020;43(Suppl 1):S135–51.

    Article  Google Scholar 

  5. Hu J, Yang S, Zhang A, et al. Abdominal Obesity Is More Closely Associated With Diabetic Kidney Disease Than General Obesity [J]. Diabetes Care. 2016;39(10):e179-180.

    Article  PubMed  Google Scholar 

  6. Hou JH, Zhu HX, Zhou ML, et al. Changes in the Spectrum of Kidney Diseases: An Analysis of 40,759 Biopsy-Proven Cases from 2003 to 2014 in China [J]. Kidney Dis (Basel). 2018;4(1):10–9.

    Article  PubMed  Google Scholar 

  7. Luk AO, Li X, Zhang Y, et al. Quality of care in patients with diabetic kidney disease in Asia: The Joint Asia Diabetes Evaluation (JADE) Registry [J]. Diabet Med. 2016;33(9):1230–9.

    Article  CAS  PubMed  Google Scholar 

  8. Chan FL, Li YC, Chen XRC. Therapeutic inertia in proteinuria management among type 2 diabetes (T2DM) patients in primary care settings: prevalence and associated risk factors [J]. BMC Fam Pract. 2021;22(1):118.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Amatruda M, Gembillo G, Giuffrida AE, et al. The aggressive diabetic kidney disease in youth-onset type 2 diabetes: pathogenetic mechanisms and potential therapies [J]. Medicina (Kaunas), 2021, 57(9).

  10. De Cosmo S, Viazzi F, Pacilli A, et al. Achievement of therapeutic targets in patients with diabetes and chronic kidney disease: insights from the Associazione Medici Diabetologi Annals initiative [J]. Nephrol Dial Transplant. 2015;30(9):1526–33.

    Article  PubMed  Google Scholar 

  11. Bayram F, Sonmez A, Haymana C, et al. Utilization of statins and LDL-cholesterol target attainment in Turkish patients with type 2 diabetes - a nationwide cross-sectional study (TEMD dyslipidemia study) [J]. Lipids Health Dis. 2020;19(1):237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus [J]. World J Diabetes. 2015;6(3):456–80.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Parhofer KG, Laufs U. The Diagnosis and Treatment of Hypertriglyceridemia [J]. Dtsch Arztebl Int. 2019;116(49):825–32.

    PubMed  Google Scholar 

  14. Peng J, Zhao F, Yang X, et al. Association between dyslipidemia and risk of type 2 diabetes mellitus in middle-aged and older Chinese adults: a secondary analysis of a nationwide cohort [J]. BMJ Open. 2021;11(5):e042821.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hirano T, Satoh N, Kodera R, et al. Dyslipidemia in diabetic kidney disease classified by proteinuria and renal dysfunction: A cross-sectional study from a regional diabetes cohort [J]. J Diabetes Investig. 2021;13(4):657–67.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sas KM, Lin J, Wang CH, et al. Renin-angiotensin system inhibition reverses the altered triacylglycerol metabolic network in diabetic kidney disease [J]. Metabolomics. 2021;17(7):65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chi ZS, Lee ET, Lu M, et al. Vascular disease prevalence in diabetic patients in China: standardised comparison with the 14 centres in the WHO Multinational Study of Vascular Disease in Diabetes [J]. Diabetologia. 2001;44(Suppl 2):S82-86.

    Article  CAS  PubMed  Google Scholar 

  18. Kim MK, Han K, Koh ES, et al. Variability in Total Cholesterol Is Associated With the Risk of End-Stage Renal Disease: A Nationwide Population-Based Study [J]. Arterioscler Thromb Vasc Biol. 2017;37(10):1963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ceriello A, De Cosmo S, Rossi MC, et al. Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes [J]. Diabetes Obes Metab. 2017;19(11):1570–8.

    Article  CAS  PubMed  Google Scholar 

  20. Matsuoka-Uchiyama N, Uchida HA, Okamoto S, et al. The Association of Postprandial Triglyceride Variability with Renal Dysfunction and Microalbuminuria in Patients with Type 2 Diabetic Mellitus: A Retrospective and Observational Study [J]. J Diabetes Res. 2022;2022:3157841.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao X, Hong F, Yin J, et al. Cohort Profile: the China Multi-Ethnic Cohort (CMEC) study [J]. Int J Epidemiol. 2021;50(3):721–721l.

    Article  PubMed  Google Scholar 

  22. Hui-Fang L, Cai L, Wang XM, et al. Ethnic disparities in prevalence and clustering of cardiovascular disease risk factors in rural Southwest China [J]. BMC Cardiovasc Disord. 2019;19(1):200.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan [J]. Am J Kidney Dis. 2009;53(6):982–92.

    Article  CAS  PubMed  Google Scholar 

  24. Bardini G, Innocenti M, Rotella CM, et al. Variability of triglyceride levels and incidence of microalbuminuria in type 2 diabetes [J]. J Clin Lipidol. 2016;10(1):109–15.

    Article  PubMed  Google Scholar 

  25. Dias CB, Moughan PJ, Wood LG, et al. Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness [J]. Lipids Health Dis. 2017;16(1):178.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vors C, Pineau G, Gabert L, et al. Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial [J]. Am J Clin Nutr. 2013;97(1):23–36.

    Article  CAS  PubMed  Google Scholar 

  27. Lai CQ, Parnell LD, Lee YC, et al. The impact of alcoholic drinks and dietary factors on epigenetic markers associated with triglyceride levels [J]. Front Genet. 2023;14:1117778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease [J]. Lancet. 2014;384(9943):626–35.

    Article  CAS  PubMed  Google Scholar 

  29. Yang D, Cai Q, Qi X, et al. Postprandial Lipid Concentrations and Daytime Biological Variation of Lipids in a Healthy Chinese Population [J]. Ann Lab Med. 2018;38(5):431–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Keirns BH, Sciarrillo CM, Hart SM, et al. Comparison of a Standardized High-Fat Meal versus a High-Fat Meal Scaled to Body Mass for Measuring Postprandial Triglycerides: A Randomized Crossover Study [J]. Metabolites. 2022;12(1):81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan SY, Wan-Yi Peh E, Marangoni AG, et al. Effects of liquid oil vs. oleogel co-ingested with a carbohydrate-rich meal on human blood triglycerides, glucose, insulin and appetite [J]. Food Funct. 2017;8(1):241–9.

    Article  CAS  PubMed  Google Scholar 

  32. Tan SY, Peh E, Siow PC, et al. Effects of the physical-form and the degree-of-saturation of oil on postprandial plasma triglycerides, glycemia and appetite of healthy Chinese adults [J]. Food Funct. 2017;8(12):4433–40.

    Article  CAS  PubMed  Google Scholar 

  33. Kolovou GD, Watts GF, Mikhailidis DP, et al. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Main Text [J]. Curr Vasc Pharmacol. 2019;17(5):498–514.

    Article  CAS  PubMed  Google Scholar 

  34. Hou X, Guan Y, Tang Y, et al. A correlation study of the relationships between nonalcoholic fatty liver disease and serum triglyceride concentration after an oral fat tolerance test [J]. Lipids Health Dis. 2021;20(1):54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolovou GD, Watts GF, Mikhailidis DP, et al. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review [J]. Curr Vasc Pharmacol. 2019;17(5):515–37.

    Article  CAS  PubMed  Google Scholar 

  36. Tian F, Xiang QY, Zhang MY, et al. Changes in non-fasting concentrations of blood lipids after a daily Chinese breakfast in overweight subjects without fasting hypertriglyceridemia [J]. Clin Chim Acta. 2019;490:147–53.

    Article  CAS  PubMed  Google Scholar 

  37. Hou X, Song A, Guan Y, et al. Identification of the Chinese Population That Can Benefit Most From Postprandial Lipid Testing: Validation of the Use of Oral Fat Tolerance Testing in Clinical Practice [J]. Front Endocrinol (Lausanne). 2022;13: 831435.

    Article  PubMed  Google Scholar 

  38. Sevilla-Gonzalez MDR, Aguilar-Salinas CA, Munoz-Hernandez L, et al. Identification of a threshold to discriminate fasting hypertriglyceridemia with postprandial values [J]. Lipids Health Dis. 2018;17(1):156.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gembillo G, Cernaro V, Giuffrida AE, et al. Gender differences in new hypoglycemic drug effects on renal outcomes: a systematic review [J]. Expert Rev Clin Pharmacol. 2022;15(3):323–39.

    Article  CAS  PubMed  Google Scholar 

  40. Tabrizi R, Ostadmohammadi V, Lankarani KB, et al. The effects of probiotic and synbiotic supplementation on inflammatory markers among patients with diabetes: A systematic review and meta-analysis of randomized controlled trials [J]. Eur J Pharmacol. 2019;852:254–64.

    Article  CAS  PubMed  Google Scholar 

  41. Higgins V, Adeli K. Postprandial Dyslipidemia: Pathophysiology and Cardiovascular Disease Risk Assessment [J]. EJIFCC. 2017;28(3):168–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolovou GD, Mikhailidis DP, Kovar J, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement [J]. Curr Vasc Pharmacol. 2011;9(3):258–70.

    Article  CAS  PubMed  Google Scholar 

  43. Russo GT, De Cosmo S, Viazzi F, et al. Plasma Triglycerides and HDL-C Levels Predict the Development of Diabetic Kidney Disease in Subjects With Type 2 Diabetes: The AMD Annals Initiative [J]. Diabetes Care. 2016;39(12):2278–87.

    Article  CAS  PubMed  Google Scholar 

  44. Jia X, Zang L, Pang P, et al. A study on the status of normoalbuminuric renal insufficiency among type 2 diabetes mellitus patients: A multicenter study based on a Chinese population [J]. J Diabetes. 2022;14(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  45. Lanktree MB, Theriault S, Walsh M, et al. HDL Cholesterol, LDL Cholesterol, and Triglycerides as Risk Factors for CKD: A Mendelian Randomization Study [J]. Am J Kidney Dis. 2018;71(2):166–72.

    Article  CAS  PubMed  Google Scholar 

  46. Liu HM, Hu Q, Zhang Q, et al. Causal Effects of Genetically Predicted Cardiovascular Risk Factors on Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study [J]. Front Genet. 2019;10:415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang YB, Sheng LT, Wei W, et al. Association of blood lipid profile with incident chronic kidney disease: A Mendelian randomization study [J]. Atherosclerosis. 2020;300:19–25.

    Article  CAS  PubMed  Google Scholar 

  48. Nofer JR. Hyperlipidemia and cardiovascular disease: triglycerides - a revival of cardiovascular risk factor? [J]. Curr Opin Lipidol. 2011;22(4):319–21.

    Article  CAS  PubMed  Google Scholar 

  49. Bozzetto L, Della Pepa G, Vetrani C, et al. Dietary Impact on Postprandial Lipemia [J]. Front Endocrinol (Lausanne). 2020;11:337.

    Article  PubMed  Google Scholar 

  50. Wang Q, Zhao B, Zhang J, et al. Faster lipid beta-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1alpha in human podocytes [J]. J Biochem Mol Toxicol. 2021;35(7):e22797.

    Article  CAS  PubMed  Google Scholar 

  51. Guebre-Egziabher F, Alix PM, Koppe L, et al. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function [J]. Biochimie. 2013;95(11):1971–9.

    Article  CAS  PubMed  Google Scholar 

  52. Ducasa GM, Mitrofanova A, Fornoni A. Crosstalk Between Lipids and Mitochondria in Diabetic Kidney Disease [J]. Curr Diab Rep. 2019;19(12):144.

    Article  CAS  PubMed  Google Scholar 

  53. Yu R, Bo H, Villani V, et al. The Inhibitory Effect of Rapamycin on Toll Like Receptor 4 and Interleukin 17 in the Early Stage of Rat Diabetic Nephropathy [J]. Kidney Blood Press Res. 2016;41(1):55–69.

    Article  CAS  PubMed  Google Scholar 

  54. Vasconcelos EM, Degasperi GR, de Oliveira HC, et al. Reactive oxygen species generation in peripheral blood monocytes and oxidized LDL are increased in hyperlipidemic patients [J]. Clin Biochem. 2009;42(12):1222–7.

    Article  CAS  PubMed  Google Scholar 

  55. Cansby E, Caputo M, Gao L, et al. Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease [J]. JCI Insight. 2020;5(24):e140483.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Qi H, Casalena G, Shi S, et al. Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility [J]. Diabetes. 2017;66(3):763–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Fund of Nursing Clinical Research Climbing Program of the First Affiliated Hospital of Guangxi Medical University [grant number [YYZS2020028, China].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Qing Lou or Wei Wei.

Ethics declarations

Ethical clearance

The study was given approval by the Ethics Committee of Second Affiliated Hospital of Guilin Medical University and First Affiliated Hospital of Guangxi Medical University and followed the Declaration of Helsinki. All participants submitted their written informed consent.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Dai, X., Xu, DQ. et al. Triglyceride variability affects diabetic kidney disease in middle-aged and elderly people with type 2 diabetes mellitus in the Guangxi Zhuang population. Int J Diabetes Dev Ctries (2023). https://doi.org/10.1007/s13410-023-01243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13410-023-01243-y

Keywords

Navigation