Skip to main content

Advertisement

Log in

The effect of exercise training on serum Omentin-1 levels, glycemic control and body composition in adults population: a systematic review and meta-analysis of randomized controlled trials

  • Review Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Omentin-1 has been acknowledged as an anti-inflammatory and insulin-sensitizing marker, which is mainly expressed in adipose tissue. Exercise training is a therapeutic intervention that can possibly improve and modify circulating Omentin-1 levels.

Objective

To determine the effects of exercise training on circulating Omentin-1, glycemic control, and body composition in adult population.

Data sources

Four electronic databases and reference lists of included articles were searched until February 5, 2023. The effect size of outcomes was summarized by calculating the mean difference (MD) with 95% confidence interval (CI).

Results

Ten RCTs comprising 385 participants were included. The overall model revealed that exercise training increased Omentin-1 compared to the control (MD = 3.57 ng.ml; 95% CI, 1.80 to 5.34 ng.ml; p < 0.001). Subgroup analysis by exercise modalities revealed significant increases in Omentin-1 after isolated aerobic (p = 0.002) and resistance (p < 0.001) training but not after combined training. Subgroup analysis by sex indicated a significant improvement of Omentin-1 in women (p = 0.015) and men (p = 0.007). Furthermore, a significant increase was found in both healthy (p = 0.035) and non-healthy (p = 0.002) participants. Analysis of other outcomes indicated that exercise training significantly reduced glucose, insulin, insulin resistance, body weight, body mass index, and body fat, as well as improved lipid profiles.

Conclusion

These findings reveal that isolated aerobic and resistance exercises resulted in an increase in serum levels of Omentin-1 in adults. More high-quality studies are required to clarify the mechanisms underlying the influence of exercise training on Omentin-1 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

As this is a systematic review and meta-analysis, all relevant data are included in the paper.

References

  1. Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600–9.

    Article  PubMed  Google Scholar 

  2. Tremblay A, Clinchamps M, Pereira B, Courteix D, Lesourd B, et al. Dietary fibres and the management of obesity and metabolic syndrome: the RESOLVE Study. Nutrients. 2020;12(10):2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wong A, Figueroa A, Fischer SM, Bagheri R, Park S-Y. The effects of mat pilates training on vascular function and body fatness in obese young women with elevated blood pressure. Am J Hypertens. 2020;33(6):563–9.

    Article  PubMed  Google Scholar 

  4. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(9):939–49.

    Article  CAS  PubMed  Google Scholar 

  5. Uchiyama Y, Suzuki T, Mochizuki K, Goda T. Dietary supplementation with (−)-epigallocatechin-3-gallate reduces inflammatory response in adipose tissue of non-obese type 2 diabetic Goto-Kakizaki (GK) rats. J Agric Food Chem. 2013;61(47):11410–7.

    Article  CAS  PubMed  Google Scholar 

  6. Mohammad Rahimi GR, Niyazi A, Alaee S. The effect of exercise training on osteocalcin, adipocytokines, and insulin resistance: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2021;32(2):213–224.

  7. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, et al. Adipokines as a therapeutic target by metformin to improve metabolic function: a systematic review of randomized controlled trials. Pharmacol Res. 2021;163: 105219.

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi K, Inoguchi T. Adipokines: therapeutic targets for metabolic syndrome. Curr Drug Targets. 2005;6(4):525–9.

    Article  CAS  PubMed  Google Scholar 

  10. Arab A, Moosavian SP, Hadi A, Karimi E, Nasirian M. The association between serum omentin level and bodyweight: a systematic review and meta-analysis of observational studies. Clin Nutr ESPEN. 2020;39:22–9.

    Article  PubMed  Google Scholar 

  11. Ma L, Zhang X, Zhang C, Zhou Y, Zhang H. Omentin-1 attenuates inflammation and barrier damage in DSS-induced ulcerative colitis in mice by inhibiting endoplasmic reticulum stress. Gen Physiol Biophys. 2022;41(3):221–30.

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Zhuo X, Jiang Z. Omentin-1 circulating levels as predictor of heart diseases: a systematic review and meta-analysis. Rev Assoc Med Bras. 2022;68:542–8.

    Article  PubMed  Google Scholar 

  13. Castro CAd, Silva KAd, Rocha MC, Sene-Fiorese M, Nonaka KO, et al. Exercise and omentin: their role in the crosstalk between muscle and adipose tissues in type 2 diabetes mellitus rat models. Front Physiol. 2019; 9:1881.

  14. Pan X, Kaminga AC, Wen SW, Acheampong K, Liu A. Omentin-1 in diabetes mellitus: a systematic review and meta-analysis. PLoS ONE. 2019;14(12): e0226292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan BK, Adya R, Randeva HS. Omentin: a novel link between inflammation, diabesity, and cardiovascular disease. Trends Cardiovasc Med. 2010;20(5):143–8.

    Article  CAS  PubMed  Google Scholar 

  16. Latif AHE, Anwar S, Gautham KS, Kadurei F, Ojo RO, et al. Association of plasma omentin-1 levels with diabetes and its complications. Cureus. 2021;13(9):e18203. https://doi.org/10.7759/cureus.18203.

  17. Ouerghi N, Fradj MKB, Talbi E, Bezrati I, Feki M, et al. Association of selected adipokines with metabolic syndrome and cardio-metabolic risk factors in young males. Cytokine. 2020;133: 155170.

    Article  CAS  PubMed  Google Scholar 

  18. Saeidi A, Haghighi MM, Kolahdouzi S, Daraei A, Abderrahmane AB, et al. The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: a narrative review. Obes Rev. 2021;22(1): e13090.

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R. Adipose tissue-derived omentin-1 function and regulation. Compr Physiol. 2011;7(3):765–81.

    Google Scholar 

  20. Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, et al. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients. 2019;11(11):2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao A, Xiao H, Zhu Y, Liu S, Zhang S, et al. Omentin-1: a newly discovered warrior against metabolic related diseases. Expert Opin Ther Targets. 2022;26(3):275–89.

    Article  CAS  PubMed  Google Scholar 

  22. Yang R-Z, Lee M-J, Hu H, Pray J, Wu H-B, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol-Endocrinol Metab. 2006;290(6):E1253–61.

    Article  CAS  PubMed  Google Scholar 

  23. Gualillo O, González-Juanatey JR, Lago F. The emerging role of adipokines as mediators of cardiovascular function: physiologic and clinical perspectives. Trends Cardiovasc Med. 2007;17(8):275–83.

    Article  CAS  PubMed  Google Scholar 

  24. Tavassoli H, Heidarianpour A. Associations between betatrophin with irisin and metabolic factors: effects of two exercise trainings in Diabetic rats. Am J Med Sci. 2021;362(5):496–505.

    Article  PubMed  Google Scholar 

  25. Tavassoli H, Heidarianpour A, Hedayati M. The effects of resistance exercise training followed by de-training on irisin and some metabolic parameters in type 2 diabetic rat model. Arch Physiol Biochem. 2022;128(1):240–7.

    Article  CAS  PubMed  Google Scholar 

  26. Verheggen RJ, Poelkens F, Roerink SH, Ramakers RE, Catoire M, et al. Exercise improves insulin sensitivity in the absence of changes in cytokines. Med Sci Sports Exerc. 2016;48(12):2378–86.

    Article  CAS  PubMed  Google Scholar 

  27. Banitalebi E, Mardanpour Shahrekordi Z, Kazemi AR, Bagheri L, Amani Shalamzari S, et al. Comparing the effects of eight weeks of combined training (Endurance and Resistance) in different orders on inflammatory factors and adipokines among elderly females. Women’s Health Bull. 2016; 3(2):1–10.

  28. Atashak S, Stannard SR, Daraei A, Soltani M, Saeidi A, et al. High-intensity interval training improves Lipocalin-2 and Omentin-1 levels in men with obesity. Int J Sports Med. 2022;43(04):328–35.

    Article  CAS  PubMed  Google Scholar 

  29. Mousavi SM, Heidarianpour A, Tavassoli H. Aerobic exercise training effects on Omentin-1, insulin resistance, and lipid profile among male smokers. Res Q Exerc Sport. 2022:1–6. https://doi.org/10.1080/02701367.2022.2070116.

  30. Saremi A, Asghari M, Ghorbani A. Effects of aerobic training on serum omentin-1 and cardiometabolic risk factors in overweight and obese men. J Sports Sci. 2010;28(9):993–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wilms B, Ernst B, Gerig R, Schultes B. Plasma omentin-1 levels are related to exercise performance in obese women and increase upon aerobic endurance training. Exp Clin Endocrinol Diabetes. 2015;123(03):187–92.

    Article  CAS  PubMed  Google Scholar 

  32. Faramarzi M, Banitalebi E, Nori S, Farzin S, Taghavian Z. Effects of rhythmic aerobic exercise plus core stability training on serum omentin, chemerin and vaspin levels and insulin resistance of overweight women. J Sports Med Phys Fitness. 2015;56(4):476–82.

    PubMed  Google Scholar 

  33. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88: 105906.

    Article  PubMed  Google Scholar 

  34. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. 2021: John Wiley & Sons.

  35. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10(1):101–29.

    Article  Google Scholar 

  37. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    Article  PubMed  Google Scholar 

  38. De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.

    Article  PubMed  Google Scholar 

  39. Moseley AM, Herbert RD, Sherrington C, Maher CG. Evidence for physiotherapy practice: a survey of the Physiotherapy Evidence Database (PEDro). Aust J Physiother. 2002;48(1):43–9.

    Article  PubMed  Google Scholar 

  40. Nikseresht, M., M.R. Hafezi Ahmadi, M. Hedayati, Detraining-induced alterations in adipokines and cardiometabolic risk factors after nonlinear periodized resistance and aerobic interval training in obese men. Appl Physiol Nutr Metab. 2016; 41(10):1018–1025.

  41. AminiLari Z, Fararouei M, Amanat S, Sinaei E, Dianatinasab S, et al. The effect of 12 weeks aerobic, resistance, and combined exercises on omentin-1 levels and insulin resistance among type 2 diabetic middle-aged women. Diabetes Metab J. 2017;41(3):205.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saeidi A, Jabbour G, Ahmadian M, Abbassi-Daloii A, Malekian F, et al. Independent and combined effects of antioxidant supplementation and circuit resistance training on selected adipokines in postmenopausal women. Front Physiol. 2019;10:484.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yates MS, Coletta AM, Zhang Q, Schmandt RE, Medepalli M, et al. Prospective randomized biomarker study of metformin and lifestyle intervention for prevention in obese women at increased risk for endometrial cancermetformin and weight loss to reduce uterine cancer risk. Cancer Prev Res. 2018;11(8):477–90.

    Article  CAS  Google Scholar 

  44. Wang L-L, He Y-M, Zhang A-N. Effect of exercise rehabilitation combined with trimetazidine on endothelial function, inflammatory response and blood lipid metabolism in patients with coronary heart disease after PCI. J Hainan Med Univ. 2019;25(2):28–32.

    Google Scholar 

  45. Hosseini M, Bagheri R, Nikkar H, Baker JS, Jaime SJ, et al. The effect of interval training on adipokine plasmatic levels in rats with induced myocardial infarction. Arch Physiol Biochem. 2022;128(5):1249–53.

    Article  CAS  PubMed  Google Scholar 

  46. Mohammad Rahimi GR, Bijeh N, Rashidlamir A. Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight adiponectin in adults with metabolic syndrome. Exp Physiol. 2020;105(3): 449–459.

  47. Hossein-Nezhad A, Mirzaei K, Alatab S, Ahmadivand Z, Najmafshar A, et al. Circulating omentin-1 in obesity and metabolic syndrome status compared to control subjects. Endocrinol Metabol Syndrome S. 2012;1:2161–1017.

    Google Scholar 

  48. Zouhal H, Zare-Kookandeh N, Haghighi MM, Daraei A, de Sousa M, et al. Physical activity and adipokine levels in individuals with type 2 diabetes: A literature review and practical applications. Rev Endocr Metab Disord. 2021;22(4):987–1011.

    Article  CAS  PubMed  Google Scholar 

  49. de Souza Batista CM, Yang R-Z, Lee M-J, Glynn NM, Yu D-Z, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655–1661.

  50. Golbidi S, Laher I. Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res. 2014;2014. https://doi.org/10.1155/2014/726861.

  51. Becic T, Studenik C, Hoffmann G. Exercise increases adiponectin and reduces leptin levels in prediabetic and diabetic individuals: systematic review and meta-analysis of randomized controlled trials. Med Sci. 2018;6(4):97.

    CAS  Google Scholar 

  52. Sirico F, Bianco A, D’Alicandro G, Castaldo C, Montagnani S, et al. Effects of physical exercise on adiponectin, leptin, and inflammatory markers in childhood obesity: systematic review and meta-analysis. Childhood Obesity (Print). 2018;14(4):207–17.

    Article  PubMed  Google Scholar 

  53. Jung HN, Jung CH. The role of anti-inflammatory adipokines in cardiometabolic disorders: moving beyond adiponectin. Int J Mol Sci. 2021;22(24):13529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ouerghi N, Fradj MKB, Bezrati I, Feki M, Kaabachi N, et al. Effect of high-intensity interval training on plasma omentin-1 concentration in overweight/obese and normal-weight youth. Obes Facts. 2017;10(4):323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lesná J, Tichá A, Hyšpler R, Musil F, Bláha V, et al. Omentin-1 plasma levels and cholesterol metabolism in obese patients with diabetes mellitus type 1: impact of weight reduction. Nutr Diabetes. 2015;5(11):e183–e183.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Moreno-Navarrete JM, Catalán V, Ortega F, Gómez-Ambrosi J, Ricart W, et al. Circulating omentin concentration increases after weight loss. Nutr Metab. 2010;7:1–6.

    Article  Google Scholar 

  57. Yan P, Liu D, Long M, Ren Y, Pang J, et al. Changes of serum omentin levels and relationship between omentin and adiponectin concentrations in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2011;119(04):257–63.

    Article  CAS  PubMed  Google Scholar 

  58. Conde J, Scotece M, Gómez R, López V, Gómez‐Reino JJ, et al. Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. Biofactors. 2011;37(6):413–420.

  59. Cai RC, Wei L, JZ D, Yu HY, Bao YQ, et al. Expression of omentin in adipose tissues in obese and type 2 diabetic patients. Zhonghua Yi Xue Za Zhi. 2009;89(6):381–4.

  60. Alizadeh M, Asad MR, Faramarzi M, Afroundeh R. Effect of eight-week high intensity interval training on omentin-1 gene expression and insulin-resistance in diabetic male rats. Ann Appl Sport Sci. 2017;5(2):29–36.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Rasul Mohammad Rahimi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 65 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, A., Niyazi, A., Nejatian Hoseinpour, A. et al. The effect of exercise training on serum Omentin-1 levels, glycemic control and body composition in adults population: a systematic review and meta-analysis of randomized controlled trials. Int J Diabetes Dev Ctries (2023). https://doi.org/10.1007/s13410-023-01229-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13410-023-01229-w

Keywords

Navigation