Skip to main content

Advertisement

Log in

The risk factors of early arterial stiffness in type 2 diabetes without diabetic macroangiopathy

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Type 2 diabetes exposes the body to a state of high blood sugar for a long time and causes varying degrees of hardening of the arteries, making it more prone to cardiovascular emergencies.

Objective

The aim of the study was to explore the risk factors of early arterial stiffness in patients with type 2 diabetes mellitus (T2DM).

Methods

A retrospective study was conducted on 316 T2DM patients without macroangiopathy in The First Hospital of Qinhuangdao. Early arterial stiffness was evaluated by brachial-ankle pulse wave velocity (baPWV).

Results

Ninety patients (28.5%) had baPWV≥1800cm/s. baPWV showed positive correlation with systolic blood pressure (r=0.456, p<0.001), diastolic blood pressure (r=0.133, p=0.018), urine albumin-creatinine ratio (UACR) (r=0.232, p<0.001), neutrophil lymphocyte ratio (NLR) (r=0.185, p=0.001), and visceral fat area (r=0.139, p=0.014). In multiple linear regression analysis, systolic blood pressure (β=6.240, p<0.001), UACR (β=3.805, p=0.019), NLR (β=43.722, p=0.013), and visceral fat area (β=0.778, p=0.030) were significant independent predictors for baPWV.

Conclusion

The decline of arterial elasticity was common in T2DM patients without macroangiopathy. Elevated blood pressure, microangiopathy, chronic inflammation, and visceral fat accumulation were the risk factors of early arterial stiffness in patients with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [Chun-Ming Ma], upon reasonable request.

References

  1. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, et al. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362(12):1090–101.

    Article  CAS  PubMed  Google Scholar 

  2. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. JAMA. 2013;310(9):948–59.

    Article  CAS  PubMed  Google Scholar 

  3. Wang L, Peng W, Zhao Z, Zhang M, Shi Z, Song Z, et al. Prevalence and treatment of diabetes in China, 2013–2018. JAMA. 2021;326(24):2498–506.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Einarson TR, Acs A, Ludwig C, Panton UH. Economic burden of cardiovascular disease in type 2 diabetes: a systematic review. Value Health. 2018;21(7):881–90.

    Article  PubMed  Google Scholar 

  6. Yang Y, Yao JJ, Du JL, Bai R, Sun LP, Sun GH, et al. Primary prevention of macroangiopathy in patients with short-duration type 2 diabetes by intensified multifactorial intervention: seven-year follow-up of diabetes complications in Chinese. Diabetes Care. 2013;36(4):978–84.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res. 2002;25(3):359–64.

    Article  PubMed  Google Scholar 

  8. Li T, Wu XJ, Chen XM, Wang SB, Liu KD, Xing YQ. Ankle-brachial index and brachial-ankle pulse wave velocity are risk factors for ischemic stroke in patients with Type 2 diabetes. Neural Regen Res. 2017;12(11):1853–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim BH, Jang JS, Kwon YS, Kim JH, Kim IJ, Lee CW. High brachial ankle pulse wave velocity as a marker for predicting coronary artery stenosis in patients with type 2 diabetes. Endocrinol Metab (Seoul). 2018;33(1):88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ogawa O, Onuma T, Kubo S, Mitsuhashi N, Muramatsu C, Kawamori R. Brachial-ankle pulse wave velocity and symptomatic cerebral infarction in patients with type 2 diabetes: a cross-sectional study. Cardiovasc Diabetol. 2003;2:10.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim HJ, Nam JS, Park JS, Cho M, Kim CS, Ahn CW, et al. Usefulness of brachial-ankle pulse wave velocity as a predictive marker of multiple coronary artery occlusive disease in Korean type 2 diabetes patients. Diabetes Res Clin Pract. 2009;85(1):30–4.

    Article  PubMed  Google Scholar 

  12. Lin CC, Li CI, Liu CS, Lin CH, Yang SY, Li TC. Prediction of all-cause and cardiovascular mortality using ankle-brachial index and brachial-ankle pulse wave velocity in patients with type 2 diabetes. Sci Rep. 2022;12(1):11053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang LH, Lin HD, Kwok CF, Won JG, Chen HS, Chu CH, et al. The combination of the ankle brachial index and brachial ankle pulse wave velocity exhibits a superior association with outcomes in diabetic patients. Intern Med. 2014;53(21):2425–31.

    Article  PubMed  Google Scholar 

  14. Kim JM, Kim SS, Kim IJ, Kim JH, Kim BH, Kim MK, et al. Arterial stiffness is an independent predictor for risk of mortality in patients with type 2 diabetes mellitus: the REBOUND study. Cardiovasc Diabetol. 2020;19(1):143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakamura M, Yamashita T, Yajima J, Oikawa Y, Sagara K, Koike A, et al. Brachial-ankle pulse wave velocity as a risk stratification index for the short-term prognosis of type 2 diabetic patients with coronary artery disease. Hypertens Res. 2010;33(10):1018–24.

    Article  PubMed  Google Scholar 

  16. Katakami N, Osonoi T, Takahara M, Saitou M, Matsuoka TA, Yamasaki Y, et al. Clinical utility of brachial-ankle pulse wave velocity in the prediction of cardiovascular events in diabetic patients. Cardiovasc Diabetol. 2014;13:128.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lou YM, Liao MQ, Wang CY, et al. Association between brachial-ankle pulse wave velocity and risk of type 2 diabetes mellitus: results from a cohort study. BMJ Open Diabetes Res Care. 2020;8(1):e001317. https://doi.org/10.1136/bmjdrc-2020-001317.

  18. Liu X, Liu L, Wang R, Jia X, Liu B, Ma N, et al. Early arteriosclerosis and its risk factors in subjects with prediabetes and new-onset diabetes. Endocr Connect. 2021;10(6):599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Association. DSoCM. Guidelines for prevention and treatment of type 2 diabetes in China. Chinese Journal of Diabetes. 2018;10(1):4–67.

  20. Takashima N, Turin TC, Matsui K, Rumana N, Nakamura Y, Kadota A, et al. The relationship of brachial-ankle pulse wave velocity to future cardiovascular disease events in the general Japanese population: the Takashima Study. J Hum Hypertens. 2014;28(5):323–7.

    Article  CAS  PubMed  Google Scholar 

  21. Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: “establishing normal and reference values.” Eur Heart J. 2010;31(19):2338–50. https://doi.org/10.1093/eurheartj/ehq165.

    Article  Google Scholar 

  22. Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013;6:327–38.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jiang Y, Li Y, Shi K, Wang J, Qian WL, Yan WF, et al. The additive effect of essential hypertension on coronary artery plaques in type 2 diabetes mellitus patients: a coronary computed tomography angiography study. Cardiovasc Diabetol. 2022;21(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Bai R, Zou L, Zong J, Qin Y, Wang Y. Brachial-ankle pulse wave velocity as a novel modality for detecting early diabetic nephropathy in type 2 diabetes patients. J Diabetes Res. 2021;2021:8862573.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu C, Li L, Shi J, Ji B, Zheng Q, Wang Y, et al. Kidney disease parameters, metabolic goal achievement, and arterial stiffness risk in Chinese adult people with type 2 diabetes. J Diabetes. 2022;14(5):345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartz SK, Caldas MC, Tomsa A, Krishnamurthy R, Bacha F. Urine albumin-to-creatinine ratio: a marker of early endothelial dysfunction in youth. J Clin Endocrinol Metab. 2015;100(9):3393–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bruno RM, Penno G, Daniele G, Pucci L, Lucchesi D, Stea F, et al. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia. 2012;55(6):1847–55.

    Article  CAS  PubMed  Google Scholar 

  28. Huang H, Jin J, Chen Y, Wang L, Zhong J, Chen Z, Xu L. Visceral fat might impact left ventricular remodeling through changes in arterial stiffness in type 2 diabetes: A cross-sectional study. Int J Cardiol. 2022;368:78–84. https://doi.org/10.1016/j.ijcard.2022.08.033.

    Article  PubMed  Google Scholar 

  29. Bouchi R, Minami I, Ohara N, Nakano Y, Nishitani R, Murakami M, et al. Impact of increased visceral adiposity with normal weight on the progression of arterial stiffness in Japanese patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2015;3(1):e000081.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bruckert E. Abdominal obesity: a health threat. Presse Med. 2008;37(10):1407–14.

    Article  PubMed  Google Scholar 

  31. Tabara Y, Takahashi Y, Setoh K, Kawaguchi T, Gotoh N, Terao C, et al. Synergistic association of elevated serum free fatty acid and glucose levels with large arterial stiffness in a general population: The Nagahama Study. Metabolism. 2016;65(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  32. Angkananard T, Anothaisintawee T, McEvoy M, Attia J, Thakkinstian A. Neutrophil lymphocyte ratio and cardiovascular disease risk: a systematic review and meta-analysis. Biomed Res Int. 2018;2018:2703518.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang H, Hu Y, Geng Y, Wu H, Chu Y, Liu R, et al. The relationship between neutrophil to lymphocyte ratio and artery stiffness in subtypes of hypertension. J Clin Hypertens (Greenwich). 2017;19(8):780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Chen X, Huang L, Lu J. Association between neutrophil-lymphocyte ratio and arterial stiffness in patients with acute coronary syndrome. Biosci Rep. 2019;39(5):BSR20190015. https://doi.org/10.1042/BSR20190015.

  35. Wang RT, Zhang JR, Li Y, Liu T, Yu KJ. Neutrophil-Lymphocyte ratio is associated with arterial stiffness in diabetic retinopathy in type 2 diabetes. J Diabetes Complications. 2015;29(2):245–9.

    Article  PubMed  Google Scholar 

  36. Park BJ, Shim JY, Lee HR, Lee JH, Jung DH, Kim HB, et al. Relationship of neutrophil-lymphocyte ratio with arterial stiffness and coronary calcium score. Clin Chim Acta. 2011;412(11–12):925–9.

    Article  CAS  PubMed  Google Scholar 

  37. Pan Y, Zhong S, Zhou K, Tian Z, Chen F, Liu Z, et al. Association between diabetes complications and the triglyceride-glucose index in hospitalized patients with type 2 diabetes. J Diabetes Res. 2021;2021:8757996.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang R, Liu XL, Jia XJ, Liu Y, Lu Q. One-hour post-load plasma glucose levels are associated with early arterial stiffness in subjects with different glucose tolerance. Diabetes Metab Syndr Obes. 2022;15:1537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wakasugi S, Mita T, Katakami N, Okada Y, Yoshii H, Osonoi T, et al. Associations between continuous glucose monitoring-derived metrics and arterial stiffness in Japanese patients with type 2 diabetes. Cardiovasc Diabetol. 2021;20(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ming Ma.

Ethics declarations

Consent for publication

We declare that submitted manuscript does not contain previously published material, and are not under consideration for publication elsewhere. Each author has made an important scientific contribution to the study and is thoroughly familiar with the primary data. All authors listed have read the complete manuscript and have approved submission of the paper. The manuscript is truthful original work without fabrication, fraud, or plagiarism.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The present study showed that the decline of arterial elasticity was common in type 2 diabetes patients. Elevated blood pressure, microangiopathy, chronic inflammation, and visceral fat accumulation were the risk factors of early arterial stiffness in patients with type 2 diabetes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JH., Wang, R., Jia, XJ. et al. The risk factors of early arterial stiffness in type 2 diabetes without diabetic macroangiopathy. Int J Diabetes Dev Ctries (2023). https://doi.org/10.1007/s13410-023-01220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13410-023-01220-5

Keywords

Navigation