Skip to main content

Advertisement

Log in

Assessment of atrial conduction time and P-wave dispersion in patients with gestational diabetes mellitus

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Objectives

We aimed to assess atrial conduction time and P-wave dispersion (PWD) in gestational diabetes mellitus (GDM) patients.

Methods

Thirty patients with GDM and 30 healthy pregnant women were included to the study. Atrial conduction times (PA) were calculated by the time interval from the onset of the P wave on the electrocardiography (ECG) to the onset of the late diastolic flow (Am wave) on echocardiography and from the lateral mitral annulus (PA lateral), septal mitral annulus (PA septum), and right ventricular tricuspid annulus (PA tricuspid). The difference between (PA lateral-PA tricuspid) was defined as interatrial electromechanical delay (EMD); the difference between (PA septum-PA tricuspid) as intra-atrial EMD; and the difference between (PA lateral-PA septal) as intraleft atrial EMD.

Results

Mean PWD was higher in GDM (52.7 ± 5.1 ms vs. 28.9 ± 4.2 ms, p < 0.001). PA lateral, PA septal and PA tricuspid were significantly higher in the GDM patients compared to the control group (65.7 ± 4.2 ms vs. 47.7 ± 4.7 ms, p < 0.001; 56.1 ± 3.4 ms vs. 40.8 ± 3.7 ms, p < 0.001 and 48.4 ± 3.9 ms vs. 36.0 ± 3.6 ms, p < 0.001, respectively). Interatrial, intra-atrial, and intraleft atrial EMDs were also significantly higher in the GDM group (median values: 18 ms vs. 12 ms; 10 ms vs 7.5 ms; 8 ms vs. 4 ms, respectively, p < 0.001 for all). There was a positive correlation between intra-atrial delay time and PWD in GDM group (r = 0.39, p = 0.033).

Conclusion

We suggest that patients with GDM have higher PWD and higher atrial conduction and EMD times compared to otherwise healthy pregnant control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baz B, Riveline J-P, Gautier J-F. Gestational diabetes mellitus: definition, aetiological and clinical aspects. Eur J Endocrinol. 2016;174(2):R43-51.

    CAS  PubMed  Google Scholar 

  2. Saravanan P, et al. Gestational diabetes: opportunities for improving maternal and child health. Lancet Diabetes Endocrinol. 2020;8(9):793–800.

    PubMed  Google Scholar 

  3. Li J-W, et al. Association of gestational diabetes mellitus (GDM) with subclinical atherosclerosis: a systemic review and meta-analysis. BMC Cardiovasc Disord. 2014;14(1):1–9.

    Google Scholar 

  4. Göbl CS, et al. Biomarkers of endothelial dysfunction in relation to impaired carbohydrate metabolism following pregnancy with gestational diabetes mellitus. Cardiovasc Diabetol. 2014;13(1):1–9.

    Google Scholar 

  5. Li J, et al. Increased risk of cardiovascular disease in women with prior gestational diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;140:324–38.

    PubMed  Google Scholar 

  6. Papazoglou AS, et al. Glycemic control and atrial fibrillation: an intricate relationship, yet under investigation. Cardiovasc Diabetol. 2022;21(1):1–12.

    Google Scholar 

  7. Mahfouz Badran H, et al. Relation of atrial electromechanical delay to P-wave dispersion on surface ECG using vector velocity imaging in patients with hypertrophic cardiomyopathy. Ann Noninvasive Electrocardiol. 2021;26(1): e12801.

    PubMed  Google Scholar 

  8. Yenercag M, et al. Evaluation of P-wave dispersion in patients with newly diagnosed coronavirus disease 2019. J Cardiovasc Med. 2021;22(3):197–203.

    CAS  Google Scholar 

  9. Şahin M, Cömert AD, Kutlu M. Evaluation of atrial fibrillation risk in patients with vasovagal syncope. Herz. 2022;47(1):79–84.

    PubMed  Google Scholar 

  10. Mezal RJ, El Rasyid H. Arrhythmia mechanism on diabetes mellitus: a narrative review. Bioscientia Medicina: Journal of Biomedicine and Translational Research. 2022;6(5):1764–72.

    Google Scholar 

  11. American Diabetes Association; 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care. 2021;44 (Supplement_1):S15–33. https://doi.org/10.2337/dc21-S002

  12. Metzger BE, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–82.

    PubMed  Google Scholar 

  13. Quiñones MA, et al. Recommendations for quantification of Doppler echocardiography: a report from the Doppler quantification task force of the nomenclature and standards committee of the American Society of Echocardiography. J Am Soc Echocardiogr. 2002;15(2):167–84.

    PubMed  Google Scholar 

  14. Chen P, et al. Risk factors and management of gestational diabetes. Cell Biochem Biophys. 2015;71(2):689–94.

    CAS  PubMed  Google Scholar 

  15. Plows JF, et al. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19(11):3342.

    PubMed  PubMed Central  Google Scholar 

  16. Archambault C, Arel R, Filion KB. Gestational diabetes and risk of cardiovascular disease: a scoping review. Open Med. 2014;8(1):e1-9.

    PubMed  PubMed Central  Google Scholar 

  17. Pallisgaard JL, et al. Risk of atrial fibrillation in diabetes mellitus: a nationwide cohort study. Eur J Prev Cardiol. 2016;23(6):621–7.

    PubMed  Google Scholar 

  18. Demir K, et al. Assessment of atrial electromechanical delay and P-wave dispersion in patients with type 2 diabetes mellitus. J Cardiol. 2016;67(4):378–83.

    PubMed  Google Scholar 

  19. Zhang X, et al. Evaluation of P wave dispersion and tissue Doppler imaging for predicting paroxysmal atrial fibrillation in patients with hypertension. Heart Surg Forum. 2018;21(1):E054-e058.

    PubMed  Google Scholar 

  20. Guler H, et al. P wave dispersion in patients with rheumatoid arthritis: its relation with clinical and echocardiographic parameters. Rheumatol Int. 2007;27(9):813–8.

    PubMed  Google Scholar 

  21. Cansel M, Yagmur J, Taşolar H, Karincaoglu Y, Ermis N, Acikgoz N, Bayramoglu A, Otlu O, Eyyüpkoca F, Pekdemir H, Ozdemir R. Assessment of atrial conduction time in patients with Behçet’s disease. Acta Reumatol Port. 2014;39(1):29–36.

    PubMed  Google Scholar 

  22. Dogdu O, et al. Assessment of atrial conduction time in patients with systemic lupus erythematosus. J Investig Med. 2011;59(2):281–6.

    PubMed  Google Scholar 

  23. Acar G, et al. Assessment of atrial electromechanical coupling characteristics in patients with ankylosing spondylitis. Echocardiography. 2009;26(5):549–57.

    PubMed  Google Scholar 

  24. Arslan D, et al. P-wave duration and dispersion in children with uncomplicated familial Mediterranean fever. Mod Rheumatol. 2013;23(6):1166–71.

    PubMed  Google Scholar 

  25. Cosgun M, et al. P-wave duration and dispersion in lone obesity. J Coll Physicians Surg Pak. 2021;30(5):567–70.

    PubMed  Google Scholar 

  26. Wang W, Zhang F, Xhen J, Chen X, Fu F, Tang M, Chen L (2014) P-wave dispersion and maximum duration are independently associated with insulin resistance in metabolic syndrome. In Annales d'endocrinologie 75(3):156–61. Elsevier Masson. https://doi.org/10.1016/j.ando.2014.05.004

  27. Kraikriangsri C, Khositseth A, Kuptanon T. P-wave dispersion as a simple tool for screening childhood obstructive sleep apnea syndrome. Sleep Med. 2019;54:159–63.

    PubMed  Google Scholar 

  28. Lavery J, et al. Gestational diabetes in the United States: temporal changes in prevalence rates between 1979 and 2010. BJOG An In J Obstetrics & Gynaecol. 2017;124(5):804–13.

    CAS  Google Scholar 

  29. Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15(5):635–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ying W, et al. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol. 2020;16(2):81–90.

    PubMed  Google Scholar 

  31. Aktas G, et al. Association between omentin levels and insulin resistance in pregnancy. Exp Clin Endocrinol Diabetes. 2014;122(03):163–6.

    CAS  PubMed  Google Scholar 

  32. Mor G, et al. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221(1):80–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hauguel-de Mouzon S, Guerre-Millo M. The placenta cytokine network and inflammatory signals. Placenta. 2006;27(8):794–8.

    CAS  PubMed  Google Scholar 

  34. Pantham P, Aye ILH, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36(7):709–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu Z, et al. IL-37 and 38 signalling in gestational diabetes. J Reprod Immunol. 2017;124:8–14.

    CAS  PubMed  Google Scholar 

  36. Sincer I, et al. Association of mean platelet volume and red blood cell distribution width with coronary collateral development in stable coronary artery disease. Advances in Interventional Cardiology/Postępy w Kardiologii Interwencyjnej. 2018;14(3):263–9.

    PubMed  Google Scholar 

  37. Cosgun M, et al. The comparison of complete blood count parameters between acute and chronic peripheral arterial disease. Medicine. 2022;11(1):111–5.

    Google Scholar 

  38. Sincer I, et al. Differential value of eosinophil count in acute coronary syndrome among elderly patients. Aging Male. 2020;23(5):958–61.

    PubMed  Google Scholar 

  39. Aviles RJ, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108(24):3006–10.

    PubMed  Google Scholar 

  40. Hu Y-F, et al. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–43.

    CAS  PubMed  Google Scholar 

  41. Harada M, Van Wagoner DR, Nattel S. Role of inflammation in atrial fibrillation pathophysiology and management. Circ J. 2015;79(3):495–502.

    PubMed  PubMed Central  Google Scholar 

  42. Lazzerini PE, Capecchi PL, Laghi-Pasini F. Long QT syndrome: an emerging role for inflammation and immunity. Frontiers in ardiovasc Med. 2015;2:26.

    Google Scholar 

  43. Acampa M, et al. P wave dispersion and silent atrial fibrillation in cryptogenic stroke: the pathogenic role of inflammation. Cardiovasc Haematol Disorders-Drug Targets Formerly Curr Drug Targets-Cardiovascular Hematol Disord. 2019;19(3):249–52.

    CAS  Google Scholar 

  44. Akyel A, et al. Atrial electromechanical delay in type 2 diabetes mellitus. Wien Klin Wochenschr. 2014;126(3–4):101–5.

    CAS  PubMed  Google Scholar 

  45. Fu H, et al. Impaired atrial electromechanical function and atrial fibrillation promotion in alloxan-induced diabetic rabbits. Cardiol J. 2013;20(1):59–67.

    PubMed  Google Scholar 

  46. Kato T, et al. What are arrhythmogenic substrates in diabetic rat atria? J Cardiovasc Electrophysiol. 2006;17(8):890–4.

    PubMed  Google Scholar 

  47. Watanabe M, et al. Conduction and refractory disorders in the diabetic atrium. Am J Physiol Heart Circ Physiol. 2012;303(1):H86-95.

    CAS  PubMed  Google Scholar 

  48. Li B, Pan Y, Li X. Type 2 diabetes induces prolonged P-wave duration without left atrial enlargement. J Korean Med Sci. 2016;31(4):525–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahfouz RA, et al. Atrial electromechanical delay, and left ventricular strain in pre-diabetic patients. IJC Metabolic & Endocrine. 2017;14:1–5.

    Google Scholar 

  50. Aldhoon B, et al. New insights into mechanisms of atrial fibrillation. Physiol Res. 2010;59(1):1–12.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafer Kok.

Ethics declarations

Informed consent

The investigation complied with the principles outlined in the Declaration of Helsinki. All participants gave written informed consent before taking.

Ethics approval

From the local ethics committee (2018/177).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kok, Z., Sincer, I., Günes, Y. et al. Assessment of atrial conduction time and P-wave dispersion in patients with gestational diabetes mellitus. Int J Diabetes Dev Ctries 43, 538–543 (2023). https://doi.org/10.1007/s13410-022-01136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-022-01136-6

Keywords

Navigation