Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes

  • Venkat Ratnam Devadasu
  • Thamir M. Alshammari
  • Mohamad Aljofan
Review Article


Diabetes is a prevalent disease throughout the world, and the incidence of diabetes is continuously rising. Researchers are constantly searching for advanced technologies for the diagnosis and treatment of diabetes. Nanotechnology is in the forefront of technologies that are being evaluated as an important tool that may serve as reliable methodology in the early diagnosis and treatment of diabetes. Experts in the nanotechnology researcher area are trying to develop novel glucose detection methods and newer delivery methods for insulin and other therapeutics. There has been progress in glucose sensing and insulin delivery; however, this is still at its early development stage. While nanotechnology has been employed in the diagnosis and treatment of a variety of diseases, the present review provides a brief update of the current progress in the utilization of nanotechnology for the diagnosis and treatment of diabetes.


Diabetes Nanotechnology Diagnosis Therapy 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract [Internet] Elsevier Ireland Ltd. 2011;94:311–21. doi: 10.1016/j.diabres.2011.10.029.CrossRefGoogle Scholar
  2. 2.
    DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. WILEY Interdiscip Rev NANOBIOTECHNOLOGY 111 RIVER ST, HOBOKEN 07030–5774 NJ USA: WILEY-BLACKWELL. 2015;7:548–64.CrossRefGoogle Scholar
  3. 3.
    American Association Diabetes. Classification and diagnosis of diabetes. Diabetes Care [Internet]. 2016;39:S13–22. Available from: CrossRefGoogle Scholar
  4. 4.
    Daneman D. Type 1 diabetes. Lancet Elsevier. 2006;367:847–58.CrossRefGoogle Scholar
  5. 5.
    Donath MY, Størling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) [Internet]. 2003;81:455–70. Available from: CrossRefGoogle Scholar
  6. 6.
    Mellitus D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2005;28:S37.CrossRefGoogle Scholar
  7. 7.
    Keen H. The Diabetes Control and Complications Trial (DCCT). Health Trends. 1994;26:41–3.PubMedGoogle Scholar
  8. 8.
    Clarke PM, Gray AM, Briggs A, Farmer AJ, Fenn P, Stevens RJ, et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS) outcomes model (UKPDS no. 68). Diabetologia. 2004;47:1747–59.CrossRefPubMedGoogle Scholar
  9. 9.
    Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med [Internet] Massachusetts Medical Society. 1993;328:1676–85. doi: 10.1056/NEJM199306103282306.CrossRefGoogle Scholar
  10. 10.
    Krolewski AS, Warram JH, Rand LI, Christlieb AR, Busick EJ, Kahn CR. Risk of proliferative diabetic retinopathy in juvenile-onset type I diabetes: a 40-yr follow-up study. Diabetes Care [Internet]. 1986;9:443–52. Available from: CrossRefGoogle Scholar
  11. 11.
    Ballard DJ, Humphrey LL, Melton LJ, Frohnert PP, Chu C-P, O’Fallon WM, et al. Epidemiology of persistent proteinuria in type II diabetes mellitus: population-based study in Rochester, Minnesota. Diabetes [Internet]. 1988;37:405–12. Available from: CrossRefGoogle Scholar
  12. 12.
    Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia [Internet]. 25:496–501. doi: 10.1007/BF00284458.
  13. 13.
    Devadasu VR, Bhardwaj V, Kumar MNVR. Can controversial nanotechnology promise drug delivery? Chem. Rev. 2013;1686–735.Google Scholar
  14. 14.
    Schäfer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev. Elsevier. 2007;59:427–43.CrossRefGoogle Scholar
  15. 15.
    Fangueiro JF, Silva AM, Garcia ML, Souto EB. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm [Internet] Elsevier BV. 2015;95:307–22. doi: 10.1016/j.ejpb.2014.12.023.CrossRefGoogle Scholar
  16. 16.
    Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release. Elsevier. 2011;156:128–45.CrossRefGoogle Scholar
  17. 17.
    Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. Elsevier. 2008;60:863–75.CrossRefGoogle Scholar
  18. 18.
    Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J. Control. release. Elsevier. 2011;152:208–31.CrossRefGoogle Scholar
  19. 19.
    Marta T, Luca S, Serena M, Luisa F, Fabio C. What is the role of nanotechnology in diagnosis and treatment of metastatic breast cancer? Promising Scenarios for the Near Future. J. Nanomater. Hindawi Publishing Corporation; 2016;2016.Google Scholar
  20. 20.
    Karimi M, Zare H, Bakhshian Nik A, Yazdani N, Hamrang M, Mohamed E, et al. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine [Internet] Future Medicine. 2016:11, 513–530. doi: 10.2217/nnm.16.3.
  21. 21.
    Adler-Moore J. AmBisome targeting to fungal infections. Bone Marrow Transplant. 1993;14:S3–7.Google Scholar
  22. 22.
    O’brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol Eur Soc Med Oncology. 2004;15:440–9.CrossRefGoogle Scholar
  23. 23.
    Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int. J. Pharm. Elsevier. 2004;285:135–46.CrossRefGoogle Scholar
  24. 24.
    Kaneda Y. Virosomes: evolution of the liposome as a targeted drug delivery system. Adv. Drug Deliv. Rev. Elsevier. 2000;43:197–205.CrossRefGoogle Scholar
  25. 25.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. release. Elsevier. 2000;65:271–84.CrossRefGoogle Scholar
  26. 26.
    Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine Nanotechnology, Biol Med Elsevier. 2008;4:273–82.CrossRefGoogle Scholar
  27. 27.
    Tamada JA, Garg S, Jovanovic L, Pitzer KR, Fermi S, Potts RO, et al. Noninvasive glucose monitoring: comprehensive clinical results. Jama American Medical Association. 1999;282:1839–44.CrossRefGoogle Scholar
  28. 28.
    Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol. Ther. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2016;18:S2–3.Google Scholar
  29. 29.
    Wang H-C, Lee A-R. Recent developments in blood glucose sensors. J. Food Drug Anal. [Internet]. Elsevier Ltd. 2015;23:191–200. Available from: Google Scholar
  30. 30.
    Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med [Internet] Elsevier Ltd. 2010;16:584–93c. doi: 10.1016/j.molmed.2010.08.002.CrossRefGoogle Scholar
  31. 31.
    Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP. Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc ACS Publications. 2003;125:588–93.CrossRefGoogle Scholar
  32. 32.
    Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov [Internet] Nature Publishing Group. 2015;14:45–57. Available from: CrossRefGoogle Scholar
  33. 33.
    Scognamiglio V. Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens. Bioelectron. Elsevier. 2013;47:12–25.CrossRefGoogle Scholar
  34. 34.
    Ansari SG, Ansari ZA, Wahab R, Kim YS, Khang G, Shin HS. Glucose sensor based on nano-baskets of tin oxide templated in porous alumina by plasma enhanced CVD. Biosens Bioelectron. 2008;23:1838–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. Glucose oxidase—an overview. Biotechnol Adv [Internet]. 2009;27:489–501. Available from: CrossRefGoogle Scholar
  36. 36.
    Ricci F, Moscone D, Tuta CS, Palleschi G, Amine A, Poscia A, et al. Novel planar glucose biosensors for continuous monitoring use. Biosens Bioelectron 2005;1993–2000.Google Scholar
  37. 37.
    Senthamizhan A, Balusamy B, Uyar T. Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem. 2015.Google Scholar
  38. 38.
    Toghill KE, Compton RG. Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci. 2010;5:1246–301.Google Scholar
  39. 39.
    Tian K, Prestgard M, Tiwari A. A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C. 2014; 100–18.Google Scholar
  40. 40.
    Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F. Technologies for continuous glucose monitoring: current problems and future promises. J. Diabetes Sci. Technol. [Internet]. 2010;4:1540–62. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS. Fluorescence-based glucose sensors. Biosens Bioelectron. 2005;2555–65.Google Scholar
  42. 42.
    Klonoff DC. Overview of fluorescence glucose sensing: a technology with a bright future. J Diabetes Sci Technol [Internet]. 2012;6:1242–50. Available from: CrossRefGoogle Scholar
  43. 43.
    Bull SD, Davidson MG, Van Den Elsen JMH, Fossey JS, Jenkins ATA, Jiang YB, et al. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc Chem Res. 2013;46:312–26.CrossRefPubMedGoogle Scholar
  44. 44.
    Sharifi E, Salimi A, Shams E, Noorbakhsh A, Amini MK. Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor. Biosens Bioelectron. 2014;56:313–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Malaisse WJ, Maedler K. Imaging of the ??-cells of the islets of Langerhans. Diabetes Res Clin Pract 2012;11–8.Google Scholar
  46. 46.
    Laurent D, Vinet L, Lamprianou S, Daval M, Filhoulaud G, Ktorza A, et al. Pancreatic β-cell imaging in humans: fiction or option? Diabetes, Obes Metab [Internet] Blackwell Publishing Ltd. 2016;18:6–15. doi: 10.1111/dom.12544.CrossRefGoogle Scholar
  47. 47.
    Ariga K, Hill JP, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys Royal Society of Chemistry. 2007;9:2319–40.CrossRefGoogle Scholar
  48. 48.
    Trau D, Renneberg R. Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor applications. Biosens Bioelectron Elsevier. 2003;18:1491–9.CrossRefGoogle Scholar
  49. 49.
    Rahiman S. Nanomedicine current trends in diabetes management. J Nanomed Nanotechnol [Internet]. 2012;3:3–8. Available from: Google Scholar
  50. 50.
    Pickup JC, Zhi Z-L, Khan F, Saxl TE. Nanomedicine in diabetes management: where we are now and where next. Expert Rev Endocrinol Metab [Internet]. 2010;5:791–4. Available from: CrossRefGoogle Scholar
  51. 51.
    Control TD. 7. Approaches to glycemic treatment. Diabetes Care [Internet]. 2014;38:S41–8. Available from: Google Scholar
  52. 52.
    Sharma G, Sharma AR, Nam J-S, Doss GPC, Lee S-S, Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for type 1 diabetes. J Nanobiotechnology [Internet] BioMed Central. 2015;13:74. Available from: Google Scholar
  53. 53.
    Malik DK, Baboota S, Ahuja A, Hasan S, Ali J. Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv. 2007;4:141–51.CrossRefPubMedGoogle Scholar
  54. 54.
    Fonte P, Araujo F, Reis S, Sarmento B. Oral insulin delivery: how far are we? J Diabetes Sci Technol United States. 2013;7:520–31.CrossRefGoogle Scholar
  55. 55.
    Chen MC, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;9826–38.Google Scholar
  56. 56.
    Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006;905–10.Google Scholar
  57. 57.
    Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev [Internet]. 2014;43:3595–629. Available from: CrossRefGoogle Scholar
  58. 58.
    Tuesca AD, Reiff C, Joseph JI, Lowman AM. Synthesis, characterization and in vivo efficacy of pegylated insulin for oral delivery with complexation hydrogels. Pharm Res. 2009;26:727–39.CrossRefPubMedGoogle Scholar
  59. 59.
    Niu M, Tan Y, Guan P, Hovgaard L, Lu Y, Qi J, et al. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. Int J Pharm. 2014;460:119–30.CrossRefPubMedGoogle Scholar
  60. 60.
    Cui M, Wu W, Hovgaard L, Lu Y, Chen D, Qi J. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int J Pharm. 2015;489:277–84.CrossRefPubMedGoogle Scholar
  61. 61.
    Iwanaga K, Ono S, Narioka K, Morimoto K, Kakemi M, Yamashita S, et al. Oral delivery of insulin by using surface coating liposomes: improvement of stability of insulin in GI tract. Int J Pharm Elsevier. 1997;157:73–80.CrossRefGoogle Scholar
  62. 62.
    Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012;157:383–90.CrossRefPubMedGoogle Scholar
  63. 63.
    Fonte P, Araújo F, Silva C, Pereira C, Reis S, Santos HA, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv 2014.Google Scholar
  64. 64.
    Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2:743–9.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Florence AT, Hillery AM, Hussain N, Jani PU. Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release Elsevier. 1995;36:39–46.CrossRefGoogle Scholar
  66. 66.
    Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech [Internet]. 2011;12:10–20. Available from: CrossRefGoogle Scholar
  67. 67.
    Bansal V, Sharma PK, Sharma N, Pal OP, Malviya R. Applications of chitosan and chitosan derivatives in drug delivery. Biol Res. 2011;5:28–37.Google Scholar
  68. 68.
    Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012;557–70.Google Scholar
  69. 69.
    Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev Elsevier. 2009;61:158–71.CrossRefGoogle Scholar
  70. 70.
    des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control release Elsevier. 2006;116:1–27.CrossRefGoogle Scholar
  71. 71.
    Liu J, Zhang SM, Chen PP, Cheng L, Zhou W, Tang WX, et al. Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J Mater Sci Mater Med 2007;2205–10.Google Scholar
  72. 72.
    Ma R, Shi L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem [Internet]. 2014;5:1503. Available from: CrossRefGoogle Scholar
  73. 73.
    Chai Z, Ma L, Wang Y, Ren X. Phenylboronic acid as a glucose-responsive trigger to tune the insulin release of glycopolymer nanoparticles. J Biomater Sci Polym Ed Taylor & Francis. 2016:1–26.Google Scholar
  74. 74.
    Ma R, Yang H, Li Z, Liu G, Sun X, Liu X, et al. Phenylboronic acid-based complex micelles with enhanced glucose-responsiveness at physiological pH by complexation with glycopolymer. Biomacromolecules. 2012;13:3409–17.CrossRefPubMedGoogle Scholar
  75. 75.
    Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S, et al. Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes. 2012;61:2230–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kropff J, DeVries JH. Continuous glucose monitoring, future products, and update on worldwide artificial pancreas projects. Diabetes Technol Ther [Internet]. 2016;18:S2-53–63. Available from: CrossRefGoogle Scholar
  77. 77.
    Desai TA. Microfabrication technology for pancreatic cell encapsulation. Expert Opin Biol Ther England. 2002;2:633–46.CrossRefGoogle Scholar

Copyright information

© Research Society for Study of Diabetes in India 2017

Authors and Affiliations

  1. 1.College of PharmacyUniversity of HailHailSaudi Arabia

Personalised recommendations