Skip to main content

Advertisement

Log in

Angiotensin I-converting enzyme inhibitory activity and hypocholesterolemic effect of some fermented tropical legumes in streptozotocin-induced diabetic rats

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is the common cause of morbidity and mortality in diabetes. Any antidiabetic management strategy should therefore include the control of CVD risk factors. Thus, this study describes the effect of fermented legume condiment-supplemented diets on lung angiotensin I-converting enzyme (ACE) and lipid profile in streptozotocin (STZ)-induced diabetic rats. Adult male Wistar rats were used for the study and diabetes was induced in them by a single intraperitoneal injection of STZ (35 mg/kg b.w.). After the diabetic status had been confirmed, the animals were randomly divided into six groups consisting of six animals each and were fed with diets supplemented with fermented Bambara groundnut, locust bean, and soybean. The study lasted for 14 days after which the plasma was analyzed for the lipid profile and the rats’ lungs were assayed for ACE activity. Elevated ACE activity, plasma total cholesterol, triglyceride, and LDL-cholesterol showed significant (P < 0.05) reduction in the rats treated with fermented legume condiment-supplemented diets, with a concomitant increase in plasma HDL-cholesterol as compared with the diabetic control. This study therefore concludes that fermented legume condiment-supplemented diets could attenuate diabetes-induced dyslipidemia, a major coronary disease risk factor, in experimental rats. This health benefit of the condiment diets could be associated with their ACE inhibitory and antihypercholesterolemic properties. However, the diet supplemented with fermented locust bean condiment appeared to be the most potent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wild S, Rolglic G, Green A, Sicress R, King H. Global prevalence of diabetes. Diabetes Care. 2004;27:1047–53.

    Article  PubMed  Google Scholar 

  2. Reasoner CA. Reducing cardiovascular complications of type 2 diabetes by targeting multiple risk factors. J Cardiovasc Pharmacol. 2008;52:136–44.

    Article  Google Scholar 

  3. Farmer JA. Diabetic dyslipidemia and atherosclerosis: evidence from clinical trials. Curr Atheroscler Rep. 2007;9:162–8.

    Article  CAS  PubMed  Google Scholar 

  4. Akbulut T, Bilsel T, Terzi S, Ciloglu F, Unal-Dayi S, Sayar N, et al. Relationship between ACE gene polymorphism and ischemic chronic heart failure in Turkish population. Eur J Med Res. 2003;8:247–53.

    CAS  PubMed  Google Scholar 

  5. Cooper SA, Whaley-Connell A, Habibi J, Wei Y, Lastra G, Manrique CM, et al. Renin–angiotensin–aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol. 2007;293(4):H2009–23.

    Article  CAS  PubMed  Google Scholar 

  6. Chu KY, Leung PS. Angiotensin II in type 2 diabetes mellitus. Curr Protein Pept Sci. 2009;10(1):75–84.

    Article  CAS  PubMed  Google Scholar 

  7. Hosseini M, Shafiee SM, Baluchnejadmojarad T. Garlic extract reduces serum angiotensin converting enzyme (ACE) activity in nondiabetic and streptozotocin-diabetic rats. Pathophysiology. 2007;14:109–12.

    Article  CAS  PubMed  Google Scholar 

  8. Itoh H, Mukoyama M, Pratt RE, Gibbons GH, Dzau VJ. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest. 1993;91:2268–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sposito AC. Emerging insights into hypertension and dyslipidemia synergies. Eur Heart J Suppl. 2004;6:G8–G12.

    Article  CAS  Google Scholar 

  10. Meyer G, Merval R, Tedgui A. Effect of pressure-induced stretch and convection on low-density lipoprotein and albumin uptake in the rabbit aortic wall. Circ Res. 1996;79:532–40.

    Article  CAS  PubMed  Google Scholar 

  11. Davila MA, Sangronis E, Granito M. Germinated or fermented legumes: food or ingredients of functional food. Arch Latinoam Nutr. 2003;53(4):348–54.

    CAS  PubMed  Google Scholar 

  12. Hu FB. Plant-based foods and prevention of cardiovascular disease: an overview. Am J Clin Nutr. 2003;78(3):544S–51S.

    CAS  PubMed  Google Scholar 

  13. Zhang JH, Tatsumi E, Ding CH, Li LT. Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chem. 2006;98:551–7.

    Article  CAS  Google Scholar 

  14. Ademiluyi AO, Oboh G. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro. J Basic Clin Physiol Pharmacol. 2012. doi:10.1515/JBCPP.2011.005.

    PubMed  Google Scholar 

  15. Omafuvbe BO, Falade OS, Osuntogun BA, Adewusi SRA. Chemical and biochemical changes in African locust bean (Parkia biglobosa) and melon (Citrullus vulgaris) seeds during fermentation to condiments. Pak J Nutr. 2004;3(3):140–5.

    Article  Google Scholar 

  16. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin I converting enzyme of rabbit lung. Biochem Pharmacol. 1971;20:1637–48.

    Article  CAS  PubMed  Google Scholar 

  17. Chu Y, Sun J, Wu X, Liu RH. Antioxidant and antiproliferative activity of common vegetables. J Agric Food Chem. 2002;50:6910–6.

    Article  CAS  PubMed  Google Scholar 

  18. Krentz AJ. Lipoprotein abnormalities and their consequences for patients with type 2 diabetes. Diabetes Obes Metab. 2003;5:S19–27.

    Article  CAS  PubMed  Google Scholar 

  19. Temme EH, Vaqn HPG, Schouten EG, Kesteloot H. Effect of a plant sterol-enriched spread on serum lipids and lipoproteins in mildly hypercholesterolaemic subjects. Acta Cardiology. 2002;57:111–5.

    Article  Google Scholar 

  20. Ravi K, Rajasekaran S, Subramanian S. Antihyperlipidemia effect of Eugenia jambolana seed kernel on streptozotocin induced diabetes in rats. Food Chem Toxicol. 2005;43:1433–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wei S, Ze X, Xiao-Wen H. Study on soybean peptide fermentation and its functions. Food Science and Technology 2005; 4. DOI:CNKI:SUN:ZNGZ.0.2005-06-007

  22. Chun J, Kim JS, Kim JH. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem. 2008;109(2):278–84.

    Article  CAS  PubMed  Google Scholar 

  23. Duranti M. Grain legume proteins and nutraceutical properties. Fitoterapia. 2006;77:67–82.

    Article  CAS  PubMed  Google Scholar 

  24. Fukui K, Tachibana N, Fukuda Y, Takamatsu K, Sugano M. Ethanol washing does not attenuate the hypocholesterolemic potential of soy protein. Nutrition. 2004;20:984–90.

    Article  CAS  PubMed  Google Scholar 

  25. Kingman SM. The influence of legume seeds on human plasma lipid concentrations. Nutr Res Rev. 1991;4:97–123.

    Article  CAS  PubMed  Google Scholar 

  26. Manzoni C, Duranti M, Eberini I, Scharnag H, März W, Castiglioni S, et al. Subcellular localization of soybean 7S globulin in HepG2 cells and LDL receptor up-regulation by its α constituent subunit. J Nutr. 2003;133:2149–55.

    CAS  PubMed  Google Scholar 

  27. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007;85:1148–56.

    CAS  PubMed  Google Scholar 

  28. Cheik NC, Rossi EA, Guerra RLF, Neuli Maria Tenório NM, Nascimento CM O d, Viana FP, et al. Effects of a ferment soy product on the adipocyte area reduction and dyslipidemia control in hypercholesterolemic adult male rats. Lipids in Health and Disease. 2008;7:50. doi:10.1186/1476-511X-7-50.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kwon DY, Oh SW, Lee JS, Yang HJ, Lee SH, Lee JH. Amino acid substitution of hypocholesterolemic peptide originated from glycinin hydrolyzate. Food Sci Biotechnol. 2002;11:55–61.

    CAS  Google Scholar 

  30. Yang HJ, Park S, Pak V, Chung KR. Fermented soybean products and their bioactive compounds. In: Soybean and health 2011; Pp21 – 58.

  31. Daugherty A, Rateri DL, Lu H, Inagami T, Cassis LA. Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation. 2004;110:3849–57.

    Article  CAS  PubMed  Google Scholar 

  32. Pomaro DR, Ihara SSM, Pinto LESA, Ueda I, Casarini DE, Ebihara F, et al. High glucose levels abolish antiatherosclerotic benefits of ACE inhibition in alloxan-induced diabetes in rabbits. J Cardiovasc Pharmacol. 2005;45:295–300.

    Article  CAS  PubMed  Google Scholar 

  33. Fonseca F, Ihara S, Izar M, et al. Hydrochlorothiazide abolishes the antiatherosclerotic effect of quinapril. Clin Exp Pharmacol Physiol. 2003;30:779–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adedayo O. Ademiluyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ademiluyi, A.O., Oboh, G. Angiotensin I-converting enzyme inhibitory activity and hypocholesterolemic effect of some fermented tropical legumes in streptozotocin-induced diabetic rats. Int J Diabetes Dev Ctries 35, 493–500 (2015). https://doi.org/10.1007/s13410-015-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-015-0323-2

Keywords

Navigation