Skip to main content

Advertisement

Log in

In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus is a result of hyperglycemia caused by overproduction of glucose at the hepatic level or because of abnormal β cell function or insulin resistance at target cells. The purpose of this study was to investigate the hypoglycemic effect of hesperidin and naringin and to suggest their probable mechanisms of action in high fat-fed/streptozotocin (STZ)-induced type 2 diabetic rats. Male albino rats were divided into four groups. Group 1 was normal control, and others were induced with diabetes by feeding a high-fat diet for 2 weeks followed by an intraperitoneal injection of streptozotocin (35 mg/kg b.wt.). Group 2 was kept as diabetic control, and groups 3 and 4 were further treated with an oral dose of 50 mg/kg hesperidin and naringin. In the diabetic control group, levels of glucose and glycosylated hemoglobin were significantly increased, while serum insulin level and hepatic and muscle glycogen were decreased. Both hesperidin and naringin supplementation significantly reversed these parameters. The activity of the hepatic key enzyme hexokinase was significantly increased whereas, glucose-6-phosphatase, glycogen phosphorylase, and fructose-1,6-bisphosphatase activities were significantly decreased as a result of treatment. Furthermore, both compounds were found to decrease intestinal glucose absorption in situ and to increase insulin release from isolated islets, peripheral glucose uptake in vitro, and adipose tissue glucose transporter type 4 (GLUT4) messenger RNA (mRNA) and protein expressions. These results showed that hesperidin and naringin have potent antihyperglycemic activity in high fat-fed/STZ-induced diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33 Suppl 1:S62–9.

    Article  PubMed Central  Google Scholar 

  2. Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. 2008;29:351–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bolzán AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res. 2002;512:121–34.

    Article  PubMed  Google Scholar 

  4. Kim MJ, Ryu GR, Chung JS, Sim SS, Min Dos Rhie DJ. Protective effect of epicatechin against the toxic effects of STZ on rat pancreatic islets: in vivo and in vitro. Pancreas. 2003;26:292–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar GPS, Arulselvan P, Kumar DS, Subramanian SP. Anti-diabetic activity of fruits of Terminalia chebula on streptozotocin induced diabetic rats. J Health Sci. 2006;52:283–91.

    Article  Google Scholar 

  6. Zhang W, Zhao J, Wang J, Pang X, Zhuang X, Zhu X, et al. Hypoglycemic effect of aqueous extract of sea buckthorn (Hippophae rhamnoides L.) seed residues in streptozotocin-induced diabetic rats. Phytother Res. 2010;24:228–32.

    CAS  PubMed  Google Scholar 

  7. Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun. 1993;197:1458–64.

    Article  CAS  PubMed  Google Scholar 

  8. Tahrani AA, Piya MK, Kennedy A, Barnett AH. Glycaemic control in type 2 diabetes: targets and new therapies. Pharmacol Ther. 2010;125:328–61.

    Article  CAS  PubMed  Google Scholar 

  9. Chen H, Ward MH, Graubard BI. Dietary patterns and adenocarcinoma of the esophagus and distal stomach. Am J Clin Nutr. 2002;75:137–44.

    CAS  PubMed  Google Scholar 

  10. Canadian Council on Animal Care. Guide to the care and use of experimental animals, vol. 2. Ottawa: CCAC; 1993.

    Google Scholar 

  11. Srinivasan K, Viswanand B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low dose of streptozotocin- treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52:313–20.

    Article  CAS  PubMed  Google Scholar 

  12. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes, the fat-fed, streptozotocin- treated rat. Metabolism. 2000;49:1390–4.

    Article  CAS  PubMed  Google Scholar 

  13. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969;6:24–7.

    Article  CAS  Google Scholar 

  14. Little RR, Wiedmeyer HM, England JD, Wilke AL, Rohlfing CL, Wians FH, et al. Interlaboratory standardization of measurements of glycohemoglobins. Clin Chem. 1992;38:2472–8.

    CAS  PubMed  Google Scholar 

  15. Laakso M. How good a marker is insulin level for insulin resistance? Am J Epidemiol. 1993;137:959–65.

    CAS  PubMed  Google Scholar 

  16. American Diabetic Association. Consensus development conference on insulin resistance. Diabetes Care. 1998;21:310–4.

    Article  Google Scholar 

  17. Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation. 2002;106:679–84.

    Article  CAS  PubMed  Google Scholar 

  18. Seifter S, Dayton S, Novic B, Muntwyler E. The estimation of glycogen with anthrone reagent. Arch Biochem. 1950;25:191–200.

    CAS  PubMed  Google Scholar 

  19. Brandstrup N, Kirk JE, Bruni C. The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol. 1997;12:166–71.

    Article  Google Scholar 

  20. Koida H, Oda T. Pathological occurrence of glucose-6-phosphatase in serum in liver diseases. Clin Chim Acta. 1959;4:554–61.

    Article  Google Scholar 

  21. Stallman W, Hers HG. The stimulation of liver phosphorylase b by AMP, fluoride and sulfate. A technical note of the specific determination of the a and b forms of liver glycogen phosphorylase. Eur J Biochem. 1975;54:341–50.

    Article  Google Scholar 

  22. Gancedo JM, Gancedo C. Fructose-1,6-disphosphatase, phospho-fructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Microbiol. 1971;76:132–8.

    CAS  Google Scholar 

  23. Munoz MA, Balon M, Fernandez C. Direct determination of inorganic phosphorus in serum with a single reagent. Clin Chem. 1983;29:372–4.

    CAS  PubMed  Google Scholar 

  24. Zarzuelo A, Risco S, Gamez MJ, Jimenez J, Camara M, Martinez MA. Hypoglycemic action of Salvia lavandulifolia vahl. ssp. Oxyodon: a contribution to studies on the mechanism of action. Life Sci. 1990;47:909–15.

    Article  CAS  PubMed  Google Scholar 

  25. Howell SL, Taylor KW. Potassium ions and the secretion of insulin by islets of Langerhans incubated in vitro. Biochem J. 1968;108:17–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pipeleers DG, Veld IPA, DeWinklem VM, Maes E, Schuit FC, Gepts W. A new in vitro model for the study of pancreatic A and B cells. Endocrinology. 1985;117:806–16.

    Article  CAS  PubMed  Google Scholar 

  27. Chomzynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Annu Rev Biochem. 1987;162:156–9.

    Article  Google Scholar 

  28. PC-STAT. One way analysis of variance. Version IA (C). Program coded by M Roa, K. Blane and M Zonneberg. USA: University of Georgia; 1985.

  29. Chandramohan G, Ignacimuthu S, Pugalendi KV. A novel compound from Casearia esculenta (Roxb.) root and its effect on carbohydrate metabolism in streptozotocin-diabetic rats. Eur J Pharmacol. 2008;590:437–43.

    Article  CAS  PubMed  Google Scholar 

  30. Saravanan G, Ponmurugan P. Ameliorative potential of Sallyl cysteine on oxidative stress in STZ induced diabetic rats. Chem Biol Interact. doi:10.1016/j.cbi.2010.10.001.

  31. Ramachandran S, Asokkumar K, Uma Maheswari M, Ravi TK, Sivashanmugam AT, Saravanan S. et al. Investigation of antidiabetic, antihyperlipidemic, and in vivo antioxidant properties of Sphaeranthus indicus Linn. in type 1 diabetic rats: an identification of possible biomarkers. Evid Based Complement Alternat Med. doi:10.1155/2011/571721.

  32. Arulrayan N, Rangasamy S, James E, Pitchai D. A database for medicinal plants used in the treatment of diabetes and its secondary complications. Bioinformatics. 2007;2:22–3.

    Google Scholar 

  33. Ayyanar M, Sankarasivaraman K, Ignacimuthu S. Traditional herbal medicines used for the treatment of diabetes among two major tribal groups in South Tamil Nadu, India. Ethnobot Leafl. 2008;12:276–80.

    Google Scholar 

  34. Reaven GM. Insulin resistance, hyperinsulinemia, hypertriglyceridemia and hypertension: parallels between human disease and rodent models. Diabetes Care. 1991;14:195–202.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang F, Ye C, Li G, Ding W, Zhou W, Zhu H, et al. The rat model of type 2 diabetes mellitus and its glycometabolism characters. Exp Anim. 2003;52:401–7.

    Article  CAS  PubMed  Google Scholar 

  36. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet Med. 1998;15:539–53.

    Article  CAS  PubMed  Google Scholar 

  37. Akhani SP, Vishwakarma SL, Goyal RK. Antidiabetic activity of Zingiber officinale in streptozotocin-induced type 1 diabetic rats. J Pharm Pharmacol. 2004;56:101–5.

    Article  CAS  PubMed  Google Scholar 

  38. Schaalan M, El-Abhar HS, Barakat M, El-Denshary ES. Westernized-like-diet-fed rats: effect on glucose homeostasis, lipid profile, and adipocyte hormones and their modulation by rosiglitazone and glimepiride. J Diabet Complicat. 2009;23:199–208.

    Article  Google Scholar 

  39. Ahmed OM, Abdel-Moneim A, Abulyazid I, Mahmoud AM. Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens and rutin in Nicotinamide/streptozotocin diabetic albino rats. Diabetol Croat. 2010;39:15–32.

    CAS  Google Scholar 

  40. Farswan M, Mazumder PM, Parcha V. Modulatory effect of an isolated compound from Syzygium cumini seeds on biochemical parameters of diabetes in rats. Int J Green Pharm. 2009;3:128–33.

    Article  Google Scholar 

  41. Beck-Nielsen H. Insulin resistance: organ manifestations and cellular mechanisms. Ugeskr Laeger. 2002;164:2130–5.

    PubMed  Google Scholar 

  42. Gold AH. The effect of diabetes and insulin on liver glycogen synthetase activation. J Biol Chem. 1970;245:903–5.

    CAS  PubMed  Google Scholar 

  43. Raju J, Gupta D, Rao AR, Yadava PK, Baquer NZ. Trigonella foenum graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reserving the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol Cell Biochem. 2001;224:45–51.

    Article  CAS  PubMed  Google Scholar 

  44. Powers AC (2005) Chapter 323. Diabetes mellitus. In: Kasper DL, Fauci AS, Longo DL, Braunwald E, Hauser SL, Jameson JL. Harrison’s principles of internal medicine. 16th ed. The McGraw-Hill Companies, Inc; 2005.

  45. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.

    Article  CAS  PubMed  Google Scholar 

  46. Song H, Shojima N, Sakoda H, Ogiharaa T, Fujishiroa M, Katagiric H, et al. Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules. Biochem Biophys Res Commun. 2002;29:291–8.

    Article  Google Scholar 

  47. Jung UJ, Lee MK, Jeong KS, Choi MS. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr. 2004;134:2499–503.

    CAS  PubMed  Google Scholar 

  48. Pari L, Suman S. Antihyperglycemic and antilipidperoxidative effects of flavanoid naringin in streptozotocin-nicotinamide induced diabetic rats. Int J Biol Med Res. 2010;1:206–10.

    Google Scholar 

  49. Akiyama S, Katsumata S, Suzuki K, Ishimi Y, Wu J, Uehara M. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J Clin Biochem Nutr. 2010;46:87–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sheela CG, Augusti KT. Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic, Allium sativum Linn. Indian J Exp Biol. 1992;30:523–6.

    CAS  PubMed  Google Scholar 

  51. Goldstein DE. How much do you know about glycated hemoglobin testing. Clin Diabetes. 1995;13:60–3.

    Google Scholar 

  52. Choi EJ. Antioxidative effects of hesperetin against 7,12-dimethylbenz(a)anthracene-induced oxidative stress in mice. Life Sci. 2008;82:1059–64.

    Article  CAS  PubMed  Google Scholar 

  53. Singh D, Chander V, Chopra K. Protective effect of naringin, a bioflavonoid on ferric nitrilotriacetate-induced oxidative renal damage in rat kidney. Toxicology. 2004;201:1–8.

    Article  CAS  PubMed  Google Scholar 

  54. Matthews CE, Suarez-Pinzon WL, Baust JJ, Strynadka K, Leiter EH, Rabinovitch A. Mechanisms underlying resistance of pancreatic islets from ALR/Lt mice to cytokine-induced destruction. J Immunol. 2005;175:1248–56.

    Article  Google Scholar 

  55. Kanitkar M, Gokhale K, Galande S, Bhonde RR. Novel role of curcumin in the prevention of cytokine-induced islet death in vitro and diabetogenesis in vivo. Br J Pharmacol. 2008;155:702–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mandrup-Poulsen T, Bendtzen K, Nielsen JH, Bendixen G, Nerup J. Cytokines cause functional and structural damage to isolated islets of Langerhans. Allergy. 1985;40:424–9.

    Article  CAS  PubMed  Google Scholar 

  57. Bendtzen K, Barington T, Mandrup-Poulsen T, Pedersen JG, Svenson M. Measurement of human IL-1 by LIF induction, pancreatic islet-cell cytotoxicity, and bone resorption. Lymphokine Res. 1986;5:S93–8.

    CAS  PubMed  Google Scholar 

  58. Darville MI, Terryn S, Eizirik DL. An octamer motif is required for activation of the inducible nitric oxide synthase promoter in pancreatic beta cells. Endocrinology. 2004;145:1130–6.

    Article  CAS  PubMed  Google Scholar 

  59. Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev. 2004;18:2195–224.

    Article  CAS  PubMed  Google Scholar 

  60. Eizirik DL, Flodstrom M, Karlsen AE, Welsh N. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia. 1996;39:875–90.

    Article  CAS  PubMed  Google Scholar 

  61. Heitmeier MR, Corbett JA. Cytotoxic role of nitric oxide in diabetes. In: Ignarro LG, editor. Nitric oxide biology and pathobiology. San Diego: Academic; 2000. p. 785–810.

    Chapter  Google Scholar 

  62. Koster JC, Marshall BA, Ensor N, Corbett JA, Nichols CG. Targeted overactivity of beta cell K (ATP) channels induces profound neonatal diabetes. Cell. 2000;100:645–54.

    Article  CAS  PubMed  Google Scholar 

  63. Corbett JA, Wang JL, Sweetland MA, Lancaster JR, McDaniel ML. Interleukin 1 beta induces the formation of nitric oxide by beta-cells purified from rodent islets of Langerhans. Evidence for the beta-cell as a source and site of action of nitric oxide. J Clin Invest. 1992;90:2384–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Thomas HE, Darwiche R, Corbett JA, Kay TWH. Interleukin-1 plus gamma-interferon-induced pancreatic beta-cell dysfunction is mediated by beta-cell nitric oxide production. Diabetes. 2002;51:311–6.

    Article  CAS  PubMed  Google Scholar 

  65. Grover JK, Vats V, Rathi SS. Antihyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. J Ethnopharmacol. 2000;73:461–70.

    Article  CAS  PubMed  Google Scholar 

  66. Iynedjian PB, Gjinovci A, Renold AE. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J Biol Chem. 1988;263:740–4.

    CAS  PubMed  Google Scholar 

  67. Lavoie L, Van de Werve G. Hormone-stimulated glucose production from glycogen in hepatocytes from streptozotocin diabetic rats. Metabolism. 1991;40:1031–6.

    Article  CAS  PubMed  Google Scholar 

  68. Ahmed OM. The hypoglycemic effect of curcumin and esculetin and their probable mechanisms of action in streptozotocin diabetic albino rats. J Egypt Ger Soc Zool. 2005;46:351–75.

    Google Scholar 

  69. Pari L, Murugan P. Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats. J Basic Clin Physiol Pharmacol. 2005;16:257–74.

    Article  CAS  PubMed  Google Scholar 

  70. Ahmed OM. Evaluation of the antihyperglycemic, antihyperlipidemic and myocardial enhancing properties of pioglitazone in diabetic and hyperthyroid rats. J Egypt Ger Soc Zool. 2006;51:253–78.

    Google Scholar 

  71. Cadefau J, Bollen M, Stalmans W. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent phosphorylation of glycogen synthase. Biochem J. 1997;322:745–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Bollen M, Keppens S, Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998;336:19–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Jung UJ, Lee MK, Park YB, Kang MA, Choia MS. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol. 2006;38:1134–45.

    Article  CAS  PubMed  Google Scholar 

  74. Berger J, Biswas C, Vicario PP, Strout HV, Saperstein R, Pilch PF. Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature. 1989;340:70–2.

    Article  CAS  PubMed  Google Scholar 

  75. Camps M, Castelló A, Muñoz P, Monfar M, Testar X, Palacín M, et al. Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle. Biochem J. 1992;282:765–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Garvey WT, Huecksteadt TP, Birnbaum MJ. Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science. 1989;245:60–3.

    Article  CAS  PubMed  Google Scholar 

  77. Sivitz WI, DeSautel SL, Kayano T, Bell BI, Pessin JE. Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature. 1989;340:72–4.

    Article  CAS  PubMed  Google Scholar 

  78. Gerrits PM, Olson AL, Pessin JE. Regulation of the Glut4/ muscle-fat glucose transporter messenger-RNA in adipose tissue of insulin-deficient diabetic rats. J Biol Chem. 1993;268:640–4.

    CAS  PubMed  Google Scholar 

  79. Ciaraldi TP, Kolterman OG, Scarlett JA, Kao M, Olefsky JM. Role of the glucose transport system in the postreceptor defect of non-insulin-dependent diabetes mellitus. Diabetes. 1982;31:1016–22.

    Article  CAS  PubMed  Google Scholar 

  80. Dohm GL, Tapscott EB, Pories WJ, Dabbs DJ, Flickinger EG, Meelheim D. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest. 1988;82:486–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Andréasson K, Galuska D, Thörne A, Sonnenfeld T, Wallberg-Hen riksson H. Decreased insulin-stimulated 3-0-methylglucose transport in in vitro incubated muscle strips from type II diabetic subjects. Acta Physiol Scand. 1991;142:255–60.

    Article  PubMed  Google Scholar 

  82. Garvey WT, Maianu L, Huecksteadt TP, Birnbaum MJ, Molina JM, Ciaraldi TP. Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J Clin Invest. 1991;87:1072–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Sinha MK, Raineri-Maldonado C, Buchanan C, Pories WJ, Carter-Su C, Pilch PF. Adipose tissue glucose transporters in NIDDM. Decreased levels of muscle/fat isoform. Diabetes. 1991;401:472–7.

    Article  Google Scholar 

  84. Zorzano A, Santalucia A, Palacín M, Guma A, Camps M. Searching for ways to upregulate GLUT4 glucose transporter expression in muscle. Gen Pharmacol. 1998;31:705–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A.M., Ahmed, O.M., Ashour, M.B. et al. In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action. Int J Diabetes Dev Ctries 35, 250–263 (2015). https://doi.org/10.1007/s13410-014-0268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-014-0268-x

Keywords

Navigation