Skip to main content
Log in

Oxidant and antioxidant parameters in prediabetes and diabetes

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

The aim of our study was to evaluate serum paraoxonase (PON1), total antioxidant status (TAS), total oxidant status (TOS), and ischemia-modified albumin (IMA) levels in patients with prediabetes, diabetes, and in healthy control subjects. The subjects were aged between 20 and 60 years. Forty diabetic subjects (mean age 46.6 ± 9.7 years), 39 prediabetic subjects (mean age 44.0 ± 9.3 years) and 24 healthy control subjects (mean age 43.7 ± 9.7 years). Lipid profile, PON1, TAS, TOS and IMA levels were measured. The serum TOS and IMA levels in diabetes were significantly higher than those of the control subjects (P = 0.024 and P = 0.012, respectively), while the serum PON1 levels of the diabetes patients were significantly lower than those of the control subjects (P = 0.039). The serum TOS levels of the diabetes patients were significantly higher than those of the subjects with prediabetes (P = 0.013). There were no significant differences between the serum IMA and PON1 levels of the prediabetes and diabetes groups (P = 0.075 and P = 0.110, respectively). The serum TAS levels of the three groups were similar. The present study demonstrated that in diabetes there is greater oxidative stress. Patients with type 2 diabetes had higher TOS and IMA levels, but lower PON1 values, than controls. There were no differences in oxidative stress markers between prediabetic patients and healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis classification of diabetes mellitus. Diabetes Care. 2009;32 Suppl 1:62–7.

    Article  Google Scholar 

  2. Groop LC. The molecular genetics of non-insulin-dependent diabetes mellitus. J Intern Med. 1997;241:95–101.

    Article  PubMed  CAS  Google Scholar 

  3. Powers AC. Diabetes mellitus. In: Braunwald E, Fauci AS, Kasper DL, et al., editors. Harrison’s principles of internal medicine. 15th ed. New York: McGraw Hill; 2001. p. 2109–37.

    Google Scholar 

  4. Lin J, Zhang M, Song F, Qin J, et al. Association between C-reactive protein and prediabetic status in a Chinese Han clinical population. Diabetes Metab Res Rev. 2008;25:219–23.

    Article  Google Scholar 

  5. Okopien B, Stachura-Kulach A, Kulach AJ, et al. The risk of atherosclerosis in patients with impaired glucose tolerance. Res Commun Mol Pathol Pharmacol. 2003;113–114:87–95.

    PubMed  Google Scholar 

  6. Barr EL, Boyko EJ, Zimmet PZ, Wolfe R, et al. Continuous relationships between non-diabetic hyperglycaemia and both cardiovascular disease and all-cause mortality: the Australian Diabetes, Obesity, and Lifestyle (AusDiab) study. Diabetologia. 2009;52:415–24.

    Article  PubMed  CAS  Google Scholar 

  7. The DECODE Study Group. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet. 1999;354:617–21.

    Article  Google Scholar 

  8. Hyvarinen M, Qiao Q, Tuomilehto J, Laatikainen T, et al. Hyperglycemia and stroke mortality: comparison between fasting and 2-h glucose criteria. Diabetes Care. 2009;32:348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Primo-Parma SL, Sorenson RC, Teiber J, La Du BN. The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics. 1996;33:498–509.

    Article  Google Scholar 

  10. Mackness MI, Mackness B, Durrington PN, Connelly PW, et al. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol. 1996;7:69–76.

    Article  PubMed  CAS  Google Scholar 

  11. Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler, Thromb, Vasc Biol. 2001;21:473–80.

    Article  CAS  Google Scholar 

  12. Mackness MI, Harty D, Bhatnagar D, Winocour PH, et al. Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis. 1991;86:193–9.

    Article  PubMed  CAS  Google Scholar 

  13. Tomas M, Latorre G, Senti M, Marrugat J. The antioxidant function of high density lipoproteins: a new paradigm in atherosclerosis. Rev Esp Cardiol. 2004;57:557–69.

    Article  PubMed  Google Scholar 

  14. Mackness B, Durrington PN, Boulton AJ, Hine D, et al. Serum paraoxonase activity in patients with type 1 diabetes compared to healthy controls. Eur J Clin Invest. 2002;32:259–64.

    Article  PubMed  CAS  Google Scholar 

  15. Abbott CA, Mackness MI, Kumar S, Boulton AJ, et al. Serum paraoxonase activity, concentration, and phenotype distribution in diabetes mellitus and its relationship to serum lipids and lipoproteins. Arterioscl Thromb Vasc Biol. 1995;15:1812–8.

    Article  PubMed  CAS  Google Scholar 

  16. Inoue M, Suehiro T, Nakamura T, Ikeda Y, et al. Serum arylesterase/diazoxonase activity and genetic polymorphisms in patients with type 2 diabetes. Metabolism. 2000;49:1400–5.

    Article  PubMed  CAS  Google Scholar 

  17. Telci A, Cakatay U, Kayali R, Erdoğan C, et al. Oxidative protein damage in plasma of type 2 diabetic patients. Horm Metab Res. 2000;32:40–3.

    Article  PubMed  CAS  Google Scholar 

  18. Mackness B, Durrington PN, Abuashia B, Boulton AJ, et al. Low paraoxonase activity in type 2 diabetes mellitus complicated by retinopathy. Clin Sci. 2000;98:355–63.

    Article  PubMed  CAS  Google Scholar 

  19. Manfredini V, Biancini GB, Vanzin CS, Dal Vesco AM, et al. Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic type 2 diabetic patients. Cell Biochem Funct. 2010;28:360–6.

    Article  PubMed  CAS  Google Scholar 

  20. Camuzcuoglu H, Toy H, Cakir H, Celik H, et al. Decreased paraoxonase and arylesterase activities in the pathogenesis of future atherosclerotic heart disease in women with gestational diabetes mellitus. J Womens Health (Lanchmt). 2009;18:1435–9.

    Article  Google Scholar 

  21. Patel BN, Mackness MI, Harty DW, Arrol S, et al. Serum esterase activities and hyperlipidaemia in the streptozotocin-diabetic rat. Biochim Biophys Acta. 1990;1035:113–6.

    Article  PubMed  CAS  Google Scholar 

  22. Chan B, Dodsworth N, Woodrow J, Tucker A, et al. Site-specific N-terminal auto-degradation of human serum albumin. Eur J Biochem. 1995;227:524–8.

    Article  PubMed  CAS  Google Scholar 

  23. Roy D, Quiles J, Gaze DC, Collinson P, et al. Role of reactive oxygen species on the formation of the novel diagnostic marker ischaemia modified albumin. Heart. 2006;92:113–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Bar-Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker formyocardial ischemia—a preliminary report. J EmergMed. 2000;19:311–5.

    Article  CAS  Google Scholar 

  25. Mayer B, Zitta S, Greilberger J, Holzer H, et al. Effect of hemodialysis on the antioxidative properties of serum. Biochim Biophys Acta. 2003;1638:267–72.

    Article  PubMed  CAS  Google Scholar 

  26. Aslan M, Sabuncu T, Kocyiğit A, Celik H, et al. Relationship between total oxidant status and severity of diabetic nephropathy in type 2 diabetic patients. Nutr Metab Cardiovasc Dis. 2007;17:734–40.

    Article  PubMed  CAS  Google Scholar 

  27. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37:112–9.

    Article  PubMed  CAS  Google Scholar 

  28. Genuth S, Alberti KG, Bennett P, Buse J, et al. The expert committee on the diagnosis and classification of diabetes mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26:3160–7.

    Article  PubMed  Google Scholar 

  29. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;3:277–85.

    Article  Google Scholar 

  30. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38:1103–11.

    Article  PubMed  CAS  Google Scholar 

  31. Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet. 1983;35:1126–38.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Kopprasch S, Pietzch J, Kuhlisch E, Fuecker K, et al. In vivo evidence for increased oxidation of circulating LDL in impaired glucose tolerance. Diabetes. 2002;51:3102–6.

    Article  PubMed  CAS  Google Scholar 

  33. Aviram M, Rosenblat M, Billecke S, Erogul J, et al. Human serum paraoxonase is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med. 1999;26:892–904.

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi K, Watanabe J, Umeda F, Nawata H. Glycation accelerates the oxidation of low density lipoprotein by copper ions. Endocr J. 1995;42:461–5.

    Article  PubMed  CAS  Google Scholar 

  35. Mackness B, Mackness MI, Arrol S, Turkie W, et al. Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus. Atherosclerosis. 1998;139:341–9.

    Article  PubMed  CAS  Google Scholar 

  36. Kurban S, Mehmetoglu I, Yerlikaya FH, Gönen S, et al. Effect of chronic regular exercise on serum ischemia-modified albumin levels and oxidative stress in type 2 diabetes mellitus. Endocr Res. 2011;36:116–23.

    Article  PubMed  CAS  Google Scholar 

  37. Bolajoko EB, Mossanda KS, Adeniyi F, Akinosun O, et al. Antioxidant and oxidative stress status in type 2 diabetes and diabetic foot ulcer. S Afr Med J. 2008;98:614–7.

    PubMed  CAS  Google Scholar 

  38. Komosinska-Vassev K, Olczyk K, Olczyk P, et al. Effects of metabolic control and vascular complications on indices of oxidative stress in type 2 diabetic patients. Diabetes Res Clin Pract. 2005;68:207–16.

    Article  PubMed  CAS  Google Scholar 

  39. Dave GS, Kalia K. Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy. Cell Mol Biol. 2007;53:68–78.

    PubMed  CAS  Google Scholar 

  40. Dogun ES, Ajala MO. Ascorbic acid and alpha tocopherol antioxidant status of type 2 diabetes mellitus patients seen in Lagos. Niger Postgrad Med J. 2005;12:155–7.

    PubMed  CAS  Google Scholar 

  41. Kaefer M, Piva SJ, De Carvalho JA, Da Silva DB, et al. Association between ischemia modified albumin, inflammation and hyperglycemia in type 2 diabetes mellitus. Clin Biochem. 2010;43:450–4.

    Article  PubMed  CAS  Google Scholar 

  42. Dahiya K, Aggarwal K, Seth S, Singh V, et al. Type 2 diabetes mellitus without vascular complications and ischemia modified albumin. Clin Lab. 2010;56:187–90.

    PubMed  CAS  Google Scholar 

  43. Piwowar A, Knapik-Kordecka M, Warwas M. Ischemia-modified albumin level in type 2 diabetes mellitus-Preliminary report. Dis Markers. 2008;24:311–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Hirsh IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complicat. 2005;19:178–81.

    Article  Google Scholar 

  45. Hirsh IB. Intensifying insulin therapy in patients with type 2 diabetes mellitus. Am J Med. 2005;118(Suppl 5A):21S–6S.

    Article  Google Scholar 

  46. Bonds DE, Miller ME, Bergenstal RM, Buse JB, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zoungas S, Patel A, Chalmers J, de Galan BE, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363:1410–8.

    Article  PubMed  CAS  Google Scholar 

  48. Polonsky KS, Sturis J, Bell GI. Seminars in medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus—a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med. 1996;334:777–83.

    Article  PubMed  CAS  Google Scholar 

  49. Barclay C, Procter KL, Glendenning R, Marsh P, et al. Can type 2 diabetes be prevented in UK general practice? A lifestyle-change feasibility study (ISAIAH). Br J Gen Pract. 2008;58:541–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Norris SL, Zhang X, Avenell A, Gregg E, et al. Long-term effectiveness of weight-loss interventions in adults with pre-diabetes: a review. Am J Prev Med. 2005;28:126–39.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support of the present study was provided by the Scientific Investigation and Project Foundation of Selcuk University.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Sami Erdem.

Additional information

The Authors state that this manuscript has not been published previously and is not currently being assessed for publication by any journal other than the ‘International Journal of Diabetes in Developing Countries’.

Each Author has contributed substantially to the research, preparation and production of the paper and approves of its submission to the Journal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, S.S., Toker, A., Kayrak, M. et al. Oxidant and antioxidant parameters in prediabetes and diabetes. Int J Diabetes Dev Ctries 35 (Suppl 3), 465–470 (2015). https://doi.org/10.1007/s13410-013-0185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-013-0185-4

Keywords

Navigation