High DHA dosage from algae oil improves postprandial hypertriglyceridemia and is safe for type-2 diabetics


Postprandial refers to diet induced changes in plasma concentrations of sugars, amino acids and fats between 0 and 6 h following a meal. This review details the fat transport through lipoprotein particles and triglyceride fractions in the postprandial plasma. The long-chain omega-3 fatty acid docosahexaenoic acid (DHA) is more active in postprandial plasma and is more abundantly incorporated into the surface phospholipid fraction of lipoproteins. A survey of controlled clinical trials in the literature demonstrates that 1,000 mg to 2,000 mg DHA daily is effective to treat hypertriglyceridemia (HTG), mixed dyslipidemia and most effectively controls elevated postprandial triglycerides (TG). TG is a marker for total fat in circulation. Omega-3 fatty acids lower fasting and postprandial TG, an activity first discovered in 1971 in Greenlandic Inuits. Low TG and high DHA were coincident with the absence of type 2 diabetes. It is now known that DHA is the major structural and functional omega-3 component of lipoproteins in human plasma. DHA is the omega-3 to most substantially increase by mass in the phospholipid fraction of very low-density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL). DHA is most effective at raising HDL levels and improves the omega-3 index in red blood cells (RBC). DHA intake also correlates with greater than 25 % reductions of fasting TG and greater than 40 % reductions in postprandial TG. Postprandial HTG is common in the type 2 diabetes; therefore, we considered the safety of DHA from Schizochytrium sp. algae oil and the evidence for risk reduction of coronary vascular disease (CVD) and type 2 diabetes. Recent clinical trials suggest high DHA intake from Chromista algae controls plasma TG, but does not appear to control glucocentric markers or cholesterol levels. DHA directly affects postprandial TG transport, but has little effect on insulin function and insulin resistance. Applications for use in South Asian diabetics are considered. 1,200 mg algae DHA daily over 3 months is an optimized program for direct control of postprandial HTG and is safe for type 2 diabetics.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Harris WS. The omega-6/omega-3 ratio and cardiovascular disease risk: uses and abuses. Curr Atheroscler Rep. 2006;8:453–9.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bang HO, Dyerberg J, Nielsen AB. Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet. 1971:1143–5.

  3. 3.

    O’Brien DM, Kristal AR, Jeannet MA, Wilkinson MJ, Bersamin A, Luick B. Red blood cell delta15N: a novel biomarker of dietary eicosapentaenoic acid and docosahexaenoic acid intake. Am J Clin Nutr. 2009;89:913–9.

    PubMed  Article  Google Scholar 

  4. 4.

    Radhika G, Ganesan A, Sathya RM, Sudha V, Mohan V. Dietary Carbohydrates, Glycemic load and serum high-density lipoprotein cholesterol concentrations among south Indian adults. (CURES-48). Eur J Clin Nutr. 2009;63:413–20.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Baum SJ, Kris-Etherton PM, Willett WC, Lichtenstein AH, Rudel LL, Maki KC, et al. Fatty acids in cardiovascular health and disease: a comprehensive update. J Clin Lipidol. 2012;6:216–34.

    PubMed  Article  Google Scholar 

  6. 6.

    Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res. 2001;40:1–94.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Qi K, Hall M, Deckelbaum RJ. Long-chain polyunsaturated fatty acid accretion in brain. Curr Opin Clin Nutr Metab Care. 2002;5:133–8.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Fedorova-Dahms I, Marone PA, Bailey-Hall E, Ryan AS. Safety evaluation of Algal oil from Schizochytrium sp. Food Chem Toxicol. 2011;49:70–7.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fedorova-Dahms I, Marone PA, Bauter M, Ryan AS. Safety evaluation of DHA-rich Algal Oil from Schizochytrium sp. Food Chem Toxicol. 2011;49:3310–8.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Bernstein AM, Ding EL, Willett WC, Rimm EB. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J Nutr. 2012;142:99–104.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Sanders TA, Gleason K, Griffin B, Miller GJ. Influence of an algal triacylglycerol containing docosahexaenoic acid (22: 6n–3) and docosapentaenoic acid (22: 5n–6) on cardiovascular risk factors in healthy men and women. Br J Nutr. 2006;95:525–31.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Doughman SD, Krupanidhi S, Sanjeevi CB. Omega-3 fatty acids for nutrition and medicine: considering algae oil as a vegetarian source of EPA and DHA. Curr Diab Rev. 2007;3:198–203.

    Article  CAS  Google Scholar 

  13. 13.

    Health RB, Karpe F, Milne RW, Burdge GC, Wootton SA, Frayn KN. Selective portioning of dietary fatty acids into the VLDL TG pool in the early postprandial period. J Lipid Res. 2003;44:2065–72.

    Article  Google Scholar 

  14. 14.

    Jacobson TA, Glickstein SB, Rowe JD, Soni PN. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6:5–18.

    PubMed  Article  Google Scholar 

  15. 15.

    Mori TA, Beilin LJ. N3 fatty acids and inflammation. Curr Atheroscler Rep. 2004;6:461–7.

    PubMed  Article  Google Scholar 

  16. 16.

    Kelley DS, Siegel D, Vemuri M, Mackey BE. Docosahexaenoic acid supplementation improves fasting and postprandial lipid profiles in hypertriglyceridemic men. Am J Clin Nutr. 2007;86:324–33.

    PubMed  CAS  Google Scholar 

  17. 17.

    Grimsgaard S, Bonaa KH, Hansen JB, Nordøy A. Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids. Am J Clin Nutr. 1997;66:649–59.

    PubMed  CAS  Google Scholar 

  18. 18.

    Griffin MD, Sanders TA, Davies IG, Morgan LM, Millward DJ, Lewis F, et al. Effects of altering the ratio of dietary n-6 to n-3 fatty acids on insulin sensitivity, lipoprotein size, and postprandial lipemia in men and postmenopausal women aged 45–70 y: the OPTILIP study. Am J Clin Nutr. 2006;84:1290–8.

    PubMed  CAS  Google Scholar 

  19. 19.

    Valdivielso P, Rioja J, García-Arias C, Sánchez-Chaparro MA, González-Santos P. Omega 3 fatty acids induce a marked reduction of apolipoprotein B48 when added to fluvastatin in patients with Type-2 diabetes and mixed hyperlipidemia: a preliminary report. Cardiovasc Diabetol. 2009;8:1.

    PubMed  Article  Google Scholar 

  20. 20.

    Engler MM, Engler MB, Malloy MJ, Paul SM, Kulkarni KR, Mietus-Snyder ML. Effect of docosahexaenoic acid on lipoprotein subclasses in hyperlipidemic children (the EARLY study). Am J Cardiol. 2005;95:869–71.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kelley DS, Adkins Y, Woodhouse LR, Swislocki A, Mackey BE, Siegel D. Docosahexaenoic acid supplementation improved lipocentric but not glucocentric markers of insulin sensitivity in hypertriglyceridemic men. Metab Syndr Relat Disord. 2012;10:32–8.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Hansen JB, Grimsgaard S, Nilsen H, Nordøy A, Bønaa KH. Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on fatty acid absorption, incorporation into serum phospholipids and postprandial triglyceridemia. Lipids. 1998;33:131–8.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Grimsgaard S, Bønaa KH, Bjerve KS. Fatty acid chain length and degree of unsaturation are inversely associated with serum triglycerides. Lipids. 2000;35:1185–93.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Kelley DS, Siegel D, Vemuri M, Chung GH, Mackey BE. Docosahexaenoic acid supplementation decreases remnant-like particle-cholesterol and increases the (n-3) index in hypertriglyceridemic men. J Nutr. 2008;138:30–5.

    PubMed  CAS  Google Scholar 

  25. 25.

    Simon JA, Hodgkins ML, Browner WS, Neuhaus JM, Bernert Jr JT, Hulley SB. Serum fatty acids and the risk of coronary heart disease. Am J Epidemiol. 1995;142:469–76.

    PubMed  CAS  Google Scholar 

  26. 26.

    Conquer JA, Holub BJ. Supplementation with an algae source of docosahexaenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects. J Nutr. 1996;126:3032–9.

    PubMed  CAS  Google Scholar 

  27. 27.

    Ryan AS, Keske MA, Hoffman JP, Nelson EB. Clinical overview of algal-docosahexaenoic acid: effects on triglyceride levels and other cardiovascular risk factors. Am J Ther. 2009;16:183–92.

    PubMed  Article  Google Scholar 

  28. 28.

    Miller M, Stone NJ, Ballantyne S et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. 2011;123:2292–2333.

  29. 29.

    Huffman KM, Hawk VH, Henes ST, Ocampo CI, Orenduff MC, Slentz CA, et al. Exercise effects on lipids in persons with varying dietary patterns-does diet matter if they exercise? Responses in studies of a targeted risk reduction intervention through defined exercise I. Am Heart J. 2012;164:117–24.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Albert CM, Hennekens CH, O’Donnell CJ, Ajani UA, Carey VJ, Willett WC, et al. Fish consumption and risk of sudden death. JAMA. 1998;279:23–8.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Gissi-Prevenzione Trial. Lancet. 1999;354:9189.

    Google Scholar 

  32. 32.

    Galli C, Tremoli E, Sirtori C. N-3 fatty acids: incorporation into tissue lipids and interactions with dietary components. In: De Caterina R, Kristensen SD, Schmidt ED, editors. Fish oil and vascular disease. Verona: Bi & Gi Publishers; 1992. p. 35–41.

    Google Scholar 

  33. 33.

    Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr. 2000;71:1085–94.

    PubMed  CAS  Google Scholar 

  34. 34.

    Engler MM, Engler MB, Malloy M, Chiu E, Besio D, Paul S, et al. Docosahexaenoic acid restores endothelial function in children with hyperlipidemia: results from the EARLY study. Int J Clin Pharmacol Ther. 2004;42:672–9.

    PubMed  CAS  Google Scholar 

  35. 35.

    Bonna KH, Thelle DS. Association between blood pressure and serum lipids in a population. Circulation. 1991;83:1305–14.

    Article  Google Scholar 

  36. 36.

    Keller DD, Jurgilas S, Perry B, Blum J, Farino B, Reynolds J, et al. Docosahexaenoic acid (DHA) lowers triglyceride levels and improves low density lipoprotein particle size in a statin-treated cardiac risk population. J Clin Lipidol. 2007;1:151.

    Article  Google Scholar 

  37. 37.

    Eritsland J, Arnesen H, Grønseth K, Fjeld NB, Abdelnoor M. Effect of dietary supplementation with n-3 fatty acids on coronary artery bypass graft patency. Am J Cardiol. 1996;77:31–6.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Daviglus ML, Stamler J, Orencia AJ, Dyer AR, Liu K, Greenland P, et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N Eng J Med. 1997;336:1046–53.

    Article  CAS  Google Scholar 

  39. 39.

    Zhang J, Sasaki S, Amano K, Kesteloot H. Fish consumption and mortality from all causes, ischemic heart disease, and stroke: an ecological study. Prev Med. 1999;28:520–9.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287:1815–21.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    McKenney JM, Sica D. Role of prescription omega-3 fatty acids in the treatment of hypertriglyceridemia. Pharmacotherapy. 2007;27:715–28.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Park Y, Harris WS. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J Lipid Res. 2003;44:455–63.

    PubMed  Article  Google Scholar 

  43. 43.

    Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond). 2005;2:5.

    Article  Google Scholar 

  44. 44.

    Avramoglu RK, Qiu W, Adeli K. Mechanisms of metabolic dyslipidemia in insulin resistant states: deregulation of hepatic and intestinal lipoprotein secretion. Front Biosci. 2003;1:d464–76.

    Article  Google Scholar 

  45. 45.

    Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Mills EJ, O’Regan C, Eyawo O, Wu P, Mills F, Berwanger O, et al. Intensive statin therapy compared with moderate dosing for prevention of cardiovascular events: a meta-analysis of >40 000 patients. Eur Heart J. 2011;32:1409–15.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Nazir A, Papita R, Anbalagan VP, Anjana RM, Deepa M, Mohan V. Prevalence of diabetes in Asian Indians based on glycated hemoglobin and fasting and 2-H post-load (75-g) plasma glucose (CURES-120). Diabetes Technol Ther. 2012;14:665–8.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Deepa M, Anjana RM, Manjula D, Narayan KM, Mohan V. Convergence of prevalence rates of diabetes and cardiometabolic risk factors in middle and low income groups in urban India: 10-year follow-up of the Chennai urban population study. J Diabetes Sci Technol. 2011;5:918–27.

    PubMed  Google Scholar 

  49. 49.

    Mozaffarian D, Wu JH. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr. 2012;142:614S–25.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Mohan V, Sandeep S, Deepa R, Shah B, Varghese C. Epidemiology of type-2 diabetes : Indian scenario. Indian J Med Res. 2007;125:217–30.

    PubMed  CAS  Google Scholar 

  51. 51.

    Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-India Diabetes (ICMR-INDIAB) study. Diabetologia. 2011;54:3022–7.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, et al. Omega-3 fatty acids and incident type-2 diabetes : a systematic review and meta-analysis. Br J Nutr. 2012;S2:S214–27.

    Article  Google Scholar 

  53. 53.

    Jiménez-Gómez Y, Marín C, Peérez-Martínez P, Hartwich J, Malczewska-Malec M, Golabek I, et al. A low-fat, high-complex carbohydrate diet supplemented with long-chain (n-3) fatty acids alters the postprandial lipoprotein profile in patients with metabolic syndrome. J Nutr. 2010;140:1595–601.

    PubMed  Article  Google Scholar 

  54. 54.

    Wu WH, Lu SC, Wang TF, Jou HJ, Wang TA. Effects of docosahexaenoic acid supplementation on blood lipids, estrogen metabolism, and in vivo oxidative stress in postmenopausal vegetarian women. Eur J Clin Nutr. 2006;60:386–92.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Arterburn LM, Oken HA, Hoffman JP, Bailey-Hall E, Chung G, Rom D, et al. Bioequivalence of docosahexaenoic acid from different algal oils in capsules and in a DHA-fortified food. Lipids. 2007;42:1011–24.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Geppert J, Kraft V, Demmelmair H, Koletzko B. Docosahexaenoic acid supplementation in vegetarians effectively increases omega-3 index: a randomized trial. Lipids. 2005;40:807–14.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Geppert J, Kraft V, Demmelmair H, Koletzko B. Microalgal docosahexaenoic acid decreases plasma triacylglycerol in normolipidaemic vegetarians: a randomised trial. Br J Nutr. 2006;95:779–86.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr. 2004;24:597–615.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Seo T, Blaner WS, Deckelbaum RJ. N-3 fatty acids: molecular approaches to optimal biological outcomes. Curr Opin Lipidol. 2005;16:11–8.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Saxena A, Vikram NK. Role of selected Indian plants in management of type-2 diabetes: a review. J Altern Complement Med. 2004;10:369–78.

    PubMed  Article  Google Scholar 

  61. 61.

    Manav M, Su J, Hughes K, Lee HP, Ong CN. Omega-3 fatty acids and selenium as coronary heart disease risk modifying factors in Asian Indian and Chinese males. Nutrition. 2004;20:967–73.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Shetty PS. Nutrition transition in India. Public Health Nutr. 2002;5:175–82.

    PubMed  Article  Google Scholar 

  63. 63.

    Mishra A, Chaudhary A, Sethi S. Oxidized n-3 fatty acids inhibit NFkappaB activation via a PPAR alpha-dependent pathway. Arterioscler Thromb Vasc Biol. 2004;24:1621–7.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Narayanan BA, Narayanan NK, Simi B, Reddy BS. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the n-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 2003;63:972–9.

    PubMed  CAS  Google Scholar 

  65. 65.

    Sundrarjun T, Komindr S, Archararit N, Dahlan W, Puchaiwatananon O, Angthararak S, et al. Effects of n-3 fatty acids on serum interleukin-6, tumour necrosis factor-alpha and soluble tumour necrosis factor receptor p55 in active rheumatoid arthritis. J Int Med Res. 2004;32:443–54.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST. Differential effects of prostaglandin derived from n-6 and n-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA. 2003;100:1751–6.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Persaud SJ, Muller D, Belin VD, Kitsou-Mylona I, Asare-Anane H, Papadimitriou A, et al. The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes. 2007;56:197–203.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Tvrzicka E, Kremmyda LS, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease–a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155:117–30.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Lambert JE, Parks EJ. Postprandial metabolism of meal triglyceride in humans. Biochim Biophys Acta. 2012;1821:721–6.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Phillips C, Owens D, Collins P, Tomkin GH. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes. Atherosclerosis. 2005;181:109–14.

    PubMed  Article  CAS  Google Scholar 

Download references


This research review was solely funded by Source-Omega, LLC where the primary author is currently employed.

Conflicts of interest statement

All other conflicts of interest are disclaimed. No known patent is associated with this article or any author. The authors individually do not endorse any product or any one source of omega-3 fatty acids.

Author information



Corresponding author

Correspondence to S. D. Doughman.

Additional information

Source(s) of support

This was a collaborative effort by the authors dedicated to the benefit of the human condition and the global public health.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doughman, S.D., Ryan, A.S., Krupanidhi, S. et al. High DHA dosage from algae oil improves postprandial hypertriglyceridemia and is safe for type-2 diabetics. Int J Diabetes Dev Ctries 33, 75–82 (2013). https://doi.org/10.1007/s13410-013-0125-3

Download citation


  • Triglycerides
  • Diabetes
  • DHA
  • Vegetarian
  • Omega-3 fatty acids