Skip to main content
Log in

New dinuclear gold(III) complex with 1,5-naphthyridine as bridging ligand: synthesis, characterization, DNA/BSA binding studies, and anticancer activity

  • Research
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

To elucidate an antitumor drug exhibiting enhanced activity relative to cisplatin, a novel dinuclear gold(III) complex was synthesized, incorporating 1,5-naphthyridine as a bridging ligand. Subsequently, the newly synthesized complex underwent comprehensive characterization using various techniques to validate its structural attributes. The stability of the complex in both water and PBS buffer was assessed through UV–Vis spectroscopy. DNA binding studies were conducted employing UV–Vis, fluorescence spectroscopy, and viscosity measurements. Competitive studies with ethidium bromide (EB) or 4′-hydroxyethidium (HOE) were performed utilizing fluorescence spectroscopy. The findings indicated that the dinuclear gold(III) complex interacts with calf thymus DNA (CT-DNA) through a groove binding mode. Moreover, the investigated complex exhibited significant binding constants for its interaction with human serum albumin (HSA) and bovine serum albumin (BSA) and interactions in the presence of site markers (eosin Y or ibuprofen). The dinuclear gold(III) complex demonstrated notable cytotoxicity against HCT116 and MDA-MB-231 cancer cell lines at 24 and 72 h post-treatment. Furthermore, the complex displayed selectivity by inducing significantly lower cytotoxic activity in healthy cells than in cancerous ones. In support of its antitumor activity, the complex exhibited proapoptotic effects, as evidenced by increased caspase 9 activity and low percentages of necrosis. Molecular docking simulations were employed to corroborate all experimentally obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon request.

References

  1. Cutillas N, Yellol GS, De Haro C et al (2013) Anticancer cyclometalated complexes of platinum group metals and gold. Coord Chem Rev 257:2784–2797. https://doi.org/10.1016/j.ccr.2013.03.024

    Article  CAS  Google Scholar 

  2. Frik M, Jiménez J, Vasilevski V et al (2014) Luminescent iminophosphorane gold, palladium and platinum complexes as potential anticancer agents. Inorg Chem Front 1:231–241. https://doi.org/10.1039/C4QI00003J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Savić A, Marzo T, Scaletti F et al (2019) New platinum(II) and palladium(II) complexes with substituted terpyridine ligands: synthesis and characterization, cytotoxicity and reactivity towards biomolecules. Biometals 32:33–47. https://doi.org/10.1007/s10534-018-0155-x

    Article  CAS  PubMed  Google Scholar 

  4. Shaw CF (1999) Gold-based therapeutic agents. Chem Rev 99:2589–2600. https://doi.org/10.1021/cr980431o

    Article  CAS  Google Scholar 

  5. Berners-Price SJ (2011) Gold-based therapeutic agents: a new perspective. Bioinorg Med Chem, pp 197–222. https://doi.org/10.1002/9783527633104.ch7

  6. Fricker SP (1996) Medical uses of gold compounds: past, present and future. Gold Bull 29:53–60. https://doi.org/10.1007/bf03215464

    Article  CAS  Google Scholar 

  7. Khan TM, Gul NS, Lu X et al (2019) In vitro and in vivo anti-tumor activity of two gold(III) complexes with isoquinoline derivatives as ligands. Eur J Med Chem 163:333–343. https://doi.org/10.1016/j.ejmech.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  8. Bertrand B, Williams MRM, Bochmann M (2018) Gold(III) complexes for antitumor applications: an overview. Chem - A Eur J 24:11840–11851. https://doi.org/10.1002/chem.201800981

    Article  CAS  Google Scholar 

  9. da Maia Pi S, Deflon VM, Abram U (2014) No title. Future. Med Chem 13:1515–1536. https://doi.org/10.4155/FMC.14.87

    Article  Google Scholar 

  10. Singh AN, Thummel RP (2009) 1,5-Naphthyridine as a new linker for the construction of bridging ligands and their corresponding Ru(II) complexes. Inorg Chem 48:6459–6470. https://doi.org/10.1021/ic900400t

    Article  CAS  PubMed  Google Scholar 

  11. Radisavljević S, Đeković Kesić A, Ćoćić D et al (2020) Studies of the stability, nucleophilic substitution reactions, DNA/BSA interactions, cytotoxic activity, DFT and molecular docking of some tetra- and penta-coordinated gold(III) complexes. New J Chem 44:11172–11187. https://doi.org/10.1039/d0nj02037k

    Article  CAS  Google Scholar 

  12. Casini A, Diawara MC, Scopelliti R et al (2010) Synthesis, characterisation and biological properties of gold(III) compounds with modified bipyridine and bipyridylamine ligands. J Chem Soc Dalt Trans 39:2239–2245. https://doi.org/10.1039/b921019a

    Article  CAS  Google Scholar 

  13. Gimeno MC, López-De-Luzuriaga JM, Manso E et al (2015) Synthesis, photochemical, and redox properties of gold(I) and gold(III) pincer complexes incorporating a 2,2′:6′,2″-terpyridine ligand framework. Inorg Chem 54:10667–10677. https://doi.org/10.1021/acs.inorgchem.5b01477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marcaccio M, Paolucci F, Paradisi C et al (2002) Electrochemistry and spectroelectrochemistry of ruthenium(II)-bipyridine building blocks. Different behaviour of the 2,3- and 2,5-bis(2-pyridyl)pyrazine bridging ligands. J Electroanal Chem 532:99–112. https://doi.org/10.1016/S0022-0728(02)00905-1

    Article  CAS  Google Scholar 

  15. Fuertes M, Masdeu C, Martin-Encinas E et al (2020) Synthetic strategies, reactivity and applications of 1,5-naphthyridines. Molecules 25:3252–3326. https://doi.org/10.3390/molecules25143252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Posssato B, Dalmolin LF, Pereira LM et al (2021) Gold(III) complexes with thiosemicarbazonate ligands as potential anticancer agents: cytotoxicity and interactions with biomolecular targets. Eur J Pharm Sci 162:105834. https://doi.org/10.1016/j.ejps.2021.105834

  17. Casini A, Messori L (2011) Molecular mechanisms and proposed targets for selected anticancer gold compounds. Curr Top Med Chem 11:2647–2660. https://doi.org/10.2174/156802611798040732

    Article  CAS  PubMed  Google Scholar 

  18. Konovalov B, Živković MD, Milovanović JZ et al (2018) Synthesis, cytotoxic activity and DNA interaction studies of new dinuclear platinum(II) complexes with an aromatic 1,5-naphthyridine bridging ligand: DNA binding mode of polynuclear platinum(II) complexes in relation to the complex structure. Dalt Trans 47:15091–15102. https://doi.org/10.1039/C8DT01946K

    Article  CAS  Google Scholar 

  19. Neidle S (2009) The structures of quadruplex nucleic acids and their drug complexes. Curr Opin Struct Biol 19:239–250. https://doi.org/10.1016/j.sbi.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  20. Marcon G, Messori L, Orioli P (2002) Gold(III) complexes as a new family of cytotoxic and antitumor agents. Expert Rev Anticancer Ther 2:337–346. https://doi.org/10.1586/14737140.2.3.337

    Article  CAS  PubMed  Google Scholar 

  21. Crooke ST, Mirabelli CK (1983) Molecular mechanisms of action of auranofin and other gold complexes as related to their biologic activities. Am J Med 75:109–113. https://doi.org/10.1016/0002-9343(83)90482-5

    Article  CAS  PubMed  Google Scholar 

  22. Ronconi L, Marzano C, Zanello P et al (2006) Gold(III) dithiocarbamate derivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties. J Med Chem 49:1648–1657. https://doi.org/10.1021/jm0509288

    Article  CAS  PubMed  Google Scholar 

  23. Radisavljević S, Scheurer A, Bockfeld D et al (2021) New mononuclear gold(III) complexes: synthesis, characterization, kinetic, mechanistic, DNA/BSA/HSA binding. DFT and molecular docking studies. Polyhedron 209:115446. https://doi.org/10.1016/j.poly.2021.115446

  24. Radisavljević S, Kesić A, Ćoćić D et al (2023) New gold(III) chlorophenyl terpyridine complex: biomolecular interactions and anticancer activity against human oral squamous cell carcinoma. Appl Organomet Chem 37:1–19. https://doi.org/10.1002/aoc.6922

    Article  CAS  Google Scholar 

  25. Dimiza F, Fountoulaki S, Papadopoulos AN et al (2011) Non-steroidal antiinflammatory drug-copper(II) complexes: structure and biological perspectives. Dalt Trans 40:8555–8568. https://doi.org/10.1039/c1dt10714c

    Article  CAS  Google Scholar 

  26. Dimiza F, Perdih F, Tangoulis V et al (2011) Interaction of copper(II) with the non-steroidal anti-inflammatory drugs naproxen and diclofenac: synthesis, structure, DNA- and albumin-binding. J Inorg Biochem 105:476–489. https://doi.org/10.1016/j.jinorgbio.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  27. Cócíć D, Jovanović-Stević S, Jelić R et al (2020) Homo- and hetero-dinuclear Pt(II)/Pd(II) complexes: studies of hydrolysis, nucleophilic substitution reactions, DNA/BSA interactions, DFT calculations, molecular docking and cytotoxic activity. Dalt Trans 49:14411–14431. https://doi.org/10.1039/d0dt02906h

    Article  CAS  Google Scholar 

  28. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  29. Andrae D, Häußermann U, Dolg M et al (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141. https://doi.org/10.1007/BF01114537

    Article  CAS  Google Scholar 

  30. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian Inc., Wallingford

  32. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321. https://doi.org/10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

  33. Milutinović M, Stanković M, Cvetković D et al (2015) The molecular mechanisms of apoptosis induced by Allium flavum L. and synergistic effects with new-synthesized Pd(II) complex on colon cancer cells. J Food Biochem 39:238–250. https://doi.org/10.1111/jfbc.12123

    Article  CAS  Google Scholar 

  34. Ćurčić MG, Stanković MS, Mrkalić EM et al (2012) Antiproliferative and proapoptotic activities of methanolic extracts from ligustrum vulgare L. as an individual treatment and in combination with palladium complex. Int J Mol Sci 13:2521–2534. https://doi.org/10.3390/ijms13022521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baskić D, Popović S, Ristić P, Arsenijević NN (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol Int 30:924–932. https://doi.org/10.1016/j.cellbi.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  36. Nikodijević DD, Jovankić J V, Cvetković DM et al (2021) L-amino acid oxidase from snake venom: biotransformation and induction of apoptosis in human colon cancer cells. Eur J Pharmacol 910:174466. https://doi.org/10.1016/j.ejphar.2021.174466

  37. Podunavac-Kuzmanovic S, Vojinovic L (2003) Synthesis and physico-chemical characterization of zinc(II), nickel(II) and cobalt(II) complexes with 2-phenyl-2-imidazoline. Acta Period Technol 148:119–124. https://doi.org/10.2298/apt0334119p

    Article  Google Scholar 

  38. Kashanian S, Heidary Zeidali S, Omidfar K, Shahabadi N (2012) Multi-spectroscopic DNA interaction studies of sunset yellow food additive. Mol Biol Rep 39:10045–10051. https://doi.org/10.1007/s11033-012-1873-8

    Article  CAS  PubMed  Google Scholar 

  39. Mihajlović K, Joksimović N, Radisavljević S et al (2022) Examination of antitumor potential of some acylpyruvates, interaction with DNA and binding properties with transport protein. J Mol Struct 1270:133943. https://doi.org/10.1016/j.molstruc.2022.133943

  40. Ramakrishnan S, Rajendiran V, Palaniandavar M et al (2009) Induction of cell death by ternary copper(II) complexes of l-tyrosine and diimines: role of coligands on DNA binding and cleavage and anticancer activity. Inorg Chem 48:1309–1322. https://doi.org/10.1021/ic801144x

    Article  CAS  PubMed  Google Scholar 

  41. Tarushi A, Lafazanis K, Kljun J et al (2013) First- and second-generation quinolone antibacterial drugs interacting with zinc(II): structure and biological perspectives. J Inorg Biochem 121:53–65. https://doi.org/10.1016/j.jinorgbio.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  42. Metcalfe C, Rajput C, Thomas JA (2006) Studies on the interaction of extended terpyridyl and triazine metal complexes with DNA. J Inorg Biochem 100:1314–1319. https://doi.org/10.1016/j.jinorgbio.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  43. Tarushi A, Polatoglou E, Kljun J et al (2011) Interaction of Zn(II) with quinolone drugs: structure and biological evaluation. Dalt Trans 40:9461–9473. https://doi.org/10.1039/c1dt10870k

    Article  CAS  Google Scholar 

  44. Milutinović MG, Milivojević NN, Đorđević NM et al (2022) Gold(III) complexes with phenanthroline-derivatives ligands induce apoptosis in human colorectal and breast cancer cell lines. J Pharm Sci 111:3215–3223. https://doi.org/10.1016/j.xphs.2022.09.021

    Article  CAS  PubMed  Google Scholar 

  45. Shareena Dasari TP, Zhang Y, Yu H (2015) Antibacterial activity and cytotoxicity of gold (I) and (III) ions and gold nanoparticles. Biochem Pharmacol Open Access 04:1000199 https://doi.org/10.4172/2167-0501.1000199

  46. Alhoshani A, Sulaiman AAA, Sobeai HMA et al (2021) Anticancer activity and apoptosis induction of gold(III) complexes containing 2,2′-bipyridine-3,3′-dicarboxylic acid and dithiocarbamates. Molecules 26:3973–3988. https://doi.org/10.3390/molecules26133973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zarić MM, Čanović PP, Pirković MS et al (2021) New gold pincer-type complexes induce caspase-dependent apoptosis in human cancer cells in vitro. Vojnosanit Pregl 78:865–873. https://doi.org/10.2298/VSP190507002Z

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia (Agreement No. 451-03-66/2024-03/200122, 451-03-57/2023-03/293, and 451-03-65/2024-03/200122).

Author information

Authors and Affiliations

Authors

Contributions

S.R. Investigation; methodology; validation; wrote the main manuscript text; prepared all figures. D.Ć. Investigation, software. B.P. Data curation; investigation; supervision; validation. I.K. Investigation; supervision. I.I.B. Investigation; supervision. N.R. Investigation; methodology. D.N. Investigation; methodology. M.M. Investigation; methodology. All authors reviewed the manuscript

Corresponding author

Correspondence to Snežana Radisavljević.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 659 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radisavljević, S., Ćoćić, D., Petrović, B. et al. New dinuclear gold(III) complex with 1,5-naphthyridine as bridging ligand: synthesis, characterization, DNA/BSA binding studies, and anticancer activity. Gold Bull (2024). https://doi.org/10.1007/s13404-024-00344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13404-024-00344-8

Keywords

Navigation