Skip to main content
Log in

Unusual selectivity in gold-catalyzed intermolecular Heck reactions

  • Review
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The Heck reaction has been considered a robust method for the cross-coupling reaction of olefins and aryl halides to yield alkenes. However, the most significant requirement is the necessity of electronically biased olefins and the requirement of directing group to control the regioselectivity of the Heck reaction. The research group of Patil and Gandon recently documented the gold-catalyzed Heck reaction, demonstrating the utilization of simple aliphatic alkenes as substrates. This approach does not need electronically biased olefins and offers a distinct regioselectivity when compared to the Heck reaction catalyzed by other transition metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Heck RF (1982) Palladium‐catalyzed vinylation of organic halides. Organic Reactions 345–390. https://doi.org/10.1002/0471264180.or027.02

  2. Berteina-Raboin S (2019) Catalyzed Mizoroki-Heck reaction or C-H activation. Catalysts 9:925. https://doi.org/10.3390/catal9110925

    Article  CAS  Google Scholar 

  3. Heck RF (1979) Palladium-catalyzed reactions of organic halides with olefins. Acc Chem Res 12:146–151. https://doi.org/10.1021/ar50136a006

    Article  CAS  Google Scholar 

  4. Crisp GT (1998) Variations on a theme - recent developments on the mechanism of the Heck reaction and their implications for synthesis. Chem Soc Rev 27:427–436. https://doi.org/10.1039/a827427z

    Article  CAS  Google Scholar 

  5. Knowles JP, Whiting A (2007) The Heck-Mizoroki cross-coupling reaction: a mechanistic perspective. Org Biomol Chem 5:31–44. https://doi.org/10.1039/b611547k

    Article  CAS  PubMed  Google Scholar 

  6. Werner EW, Mei T-S, Burckle AJ, Sigman MS (2012) Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338:1455–1458. https://doi.org/10.1126/science.1229208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu L, Hilton MJ, Zhang X, Norrby P-O, Wu Y-D, Sigman MS, Wiest O (2014) Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J Am Chem Soc 136:1960–1967. https://doi.org/10.1021/ja4109616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Werner EW, Sigman MS (2010) A highly selective and general palladium catalyst for the oxidative Heck reaction of electronically nonbiased olefins. J Am Chem Soc 132:13981–13983. https://doi.org/10.1021/ja1060998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Werner EW, Sigman MS (2011) Operationally simple and highly (E)-styrenyl-selective Heck reactions of electronically nonbiased olefins. J Am Chem Soc 133:9692–9695. https://doi.org/10.1021/ja203164p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Delcamp JH, Brucks AP, White MC (2008) A general and highly selective chelate-controlled intermolecular oxidative Heck reaction. J Am Chem Soc 130:11270–11271. https://doi.org/10.1021/ja804120r

    Article  CAS  PubMed  Google Scholar 

  11. Romine AM, Yang KS, Karunananda MK, Chen JS, Engle KM (2019) Synthetic and mechanistic studies of a versatile heteroaryl thioether directing group for Pd(II) catalysis. ACS Cat 9:7626–7640. https://doi.org/10.1021/acscatal.9b01471

    Article  CAS  Google Scholar 

  12. Yang S, Liu L, Zhou Z, Huang Z, Zhao Y (2020) Palladium-catalyzed direct C-H arylation of 3-butenoic acid derivatives. Org Lett 23:296–299. https://doi.org/10.1021/acs.orglett.0c03773

    Article  CAS  PubMed  Google Scholar 

  13. Font P, Ribas X (2021) Fundamental basis for implementing oxidant-free Au(I)/Au(III) catalysis. Eur J of Inorg Chem 2021:2556–2569. https://doi.org/10.1002/ejic.202100301

    Article  CAS  Google Scholar 

  14. Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT (2021) The interplay of carbophilic activation and Au(i)/Au(iii) catalysis: an emerging technique for 1,2-difunctionalization of C-C multiple bonds. Che Soc Rev 50:10422–10450. https://doi.org/10.1039/d0cs00700e

    Article  CAS  Google Scholar 

  15. Hopkinson MN, Gee AD, Gouverneur V (2011) AuI/AuIII catalysis: an alternative approach for C-C oxidative coupling. Chem Eur J 17:8248–8262. https://doi.org/10.1002/chem.201100736

    Article  CAS  PubMed  Google Scholar 

  16. Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D (2017) Rational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides. Nat Commun 8:565. https://doi.org/10.1038/s41467-017-00672-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodriguez J, Zeineddine A, Sosa Carrizo ED, Miqueu K, Saffon-Merceron N, Amgoune A, Bourissou D (2019) Catalytic Au(i)/Au(iii) arylation with the hemilabile MeDalphos ligand: unusual selectivity for electron-rich iodoarenes and efficient application to indoles. Chem Sci 10:7183–7192. https://doi.org/10.1039/c9sc01954e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akram MO, Das A, Chakrabarty I, Patil NT (2019) Ligand-enabled gold-catalyzed C(sp2)–N cross-coupling reactions of aryl iodides with amines. Org Lett 21:8101–8105. https://doi.org/10.1021/acs.orglett.9b03082

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez J, Adet N, Saffon-Merceron N, Bourissou D (2020) Au(i)/Au(iii)-catalyzed C-N coupling. Chem Commun 56:94–97. https://doi.org/10.1039/c9cc07666b

    Article  CAS  Google Scholar 

  20. Mudshinge SR, Yang Y, Xu B, Hammond GB, Lu Z (2022) Gold (I/III)-Catalyzed trifluoromethylthiolation and trifluoromethylselenolation of organohalides. Angew Chem Intl Ed 61:e202115687. https://doi.org/10.1002/anie.202115687

    Article  CAS  Google Scholar 

  21. Tathe AG, Patil NT (2022) Ligand-enabled gold-catalyzed C(sp2)–S cross-coupling reactions. Org Lett 24:4459–4463. https://doi.org/10.1021/acs.orglett.2c01692

    Article  CAS  PubMed  Google Scholar 

  22. Chen G, Xu B (2023) Hydrogen bond donor and unbalanced ion pair promoter-assisted gold-catalyzed carbon–oxygen cross-coupling of (hetero)aryl iodides with alcohols. ACS Cat 13:1823–1829. https://doi.org/10.1021/acscatal.2c05890

    Article  CAS  Google Scholar 

  23. Das A, Patil NT (2023) Ligand-enabled gold-catalyzed C(sp2)–O cross-coupling reactions. ACS Cat 13:3847–3853. https://doi.org/10.1021/acscatal.3c00338

    Article  CAS  Google Scholar 

  24. Li W, Chen Y, Chen Y, Xia S, Chang W, Zhu C, Houk KN, Liang Y, Xie J (2023) Site-selective arylation of carboxamides from unprotected peptides. J Am Chem Soc 145:14865–14873. https://doi.org/10.1021/jacs.3c03840

    Article  CAS  PubMed  Google Scholar 

  25. Urvashi U, Mishra S, Patil NT (2023) Gold-catalyzed alkenylation and arylation of phosphorothioates. Chem Sci 14:12134–13139. https://doi.org/10.1039/d3sc04888h

    Article  CAS  Google Scholar 

  26. Xie J, Li J, Weingand V, Rudolph M, Hashmi ASK (2016) Intermolecular photocatalyzed Heck-like coupling of unactivated alkyl bromides by a dinuclear gold complex. Chem Eur J 22:12646–12650. https://doi.org/10.1002/chem.201602939

    Article  CAS  PubMed  Google Scholar 

  27. Wei C, Zhang L, Xia Z (2023) Hemilabile P, N-ligand-assisted gold-catalyzed Heck reaction of aryl and styryl iodides with styrenes. Org Lett 25:6808–6812. https://doi.org/10.1021/acs.orglett.3c02244

    Article  CAS  PubMed  Google Scholar 

  28. Rigoulet M, Thillaye du Boullay O, Amgoune A, Bourissou D (2020) Gold(I)/Gold(III) Catalysis that merges oxidative addition and π-alkene activation. Angew Chem Int Ed 59:16625–16630. https://doi.org/10.1002/anie.202006074

    Article  CAS  Google Scholar 

  29. Chintawar CC, Yadav AK, Patil NT (2020) Gold-catalyzed 1,2-diarylation of alkenes. Angew Chem Int Ed 59:11808–11813. https://doi.org/10.1002/anie.202002141

    Article  CAS  Google Scholar 

  30. Zhang S, Wang C, Ye X, Shi X (2020) Intermolecular alkene difunctionalization via gold-catalyzed oxyarylation. Angew Chem Int Ed 59:20470–20474. https://doi.org/10.1002/anie.202009636

    Article  CAS  Google Scholar 

  31. Tathe AG, Chintawar CC, Bhoyare VW, Patil NT (2020) Ligand-enabled gold-catalyzed 1,2-heteroarylation of alkenes. Chem Commun 56:9304–9307. https://doi.org/10.1039/d0cc03707a

    Article  CAS  Google Scholar 

  32. Tathe AG, Urvashi YAK, Chintawar CC, Patil NT (2021) Gold-catalyzed 1,2-aminoarylation of alkenes with external amines. ACS Cat 11:4576–4582. https://doi.org/10.1021/acscatal.1c00789

    Article  CAS  Google Scholar 

  33. Chintawar CC, Bhoyare VW, Mane MV, Patil NT (2022) Enantioselective Au(I)/Au(III) redox catalysis enabled by chiral (P, N)-ligands. J Am Chem Soc 144:7089–7095. https://doi.org/10.1021/jacs.2c02799

    Article  CAS  PubMed  Google Scholar 

  34. Ye X, Wang C, Zhang S, Tang Q, Wojtas L, Li M, Shi X (2022) Chiral hemilabile P, N-ligand-assisted gold redox catalysis for enantioselective alkene aminoarylation. Chem Eur J 28:e202201018. https://doi.org/10.1002/chem.202201018

    Article  CAS  PubMed  Google Scholar 

  35. Sancheti SP, Singh Y, Mane MV, Patil NT (2023) Gold-catalyzed 1,2-dicarbofunctionalization of alkynes with organohalides. Angew Chem Int Ed 62:e202310493. https://doi.org/10.1002/anie.202310493

    Article  CAS  Google Scholar 

  36. Kumar A, Das A, Patil NT (2023) Gold-catalyzed aryl-alkenylation of alkenes. Org Lett 25:2934–2938. https://doi.org/10.1021/acs.orglett.3c01044

    Article  CAS  PubMed  Google Scholar 

  37. Joost M, Amgoune A, Bourissou D (2015) Reactivity of gold complexes towards elementary organometallic reactions. Angew Chem Int Ed 54:15022–15045. https://doi.org/10.1002/anie.201506271

    Article  CAS  Google Scholar 

  38. Rekhroukh F, Estevez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D (2016) β-hydride Elimination at low-coordinate gold(III) centers. J Am Chem Soc 138:11920–11929. https://doi.org/10.1021/jacs.6b07035

    Article  CAS  PubMed  Google Scholar 

  39. Mankad NP, Toste FD (2012) C(sp3)–F reductive elimination from alkylgold(iii) fluoride complexes. Chem Sci 3:72–76. https://doi.org/10.1039/c1sc00515d

    Article  CAS  PubMed  Google Scholar 

  40. Kumar R, Krieger J-P, Gómez-Bengoa E, Fox T, Linden A, Nevado C (2017) The first gold(III) formate: evidence for β-hydride elimination. Angew Chem Int Ed 56:12862–12865. https://doi.org/10.1002/anie.201705557

    Article  CAS  Google Scholar 

  41. Roşca D-A, Smith DA, Hughes DL, Bochmann M (2012) A thermally stable gold(III) hydride: synthesis, reactivity, and reductive condensation as a route to gold(II) complexes. Angew Chem Int Ed 51:10643–10646. https://doi.org/10.1002/anie.201206468

    Article  CAS  Google Scholar 

  42. Rekhroukh F, Blons C, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D (2017) Gold(iii)–arene complexes by insertion of olefins into gold–aryl bonds. Chem Sci 8:4539–4545. https://doi.org/10.1039/c7sc00145b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Serra J, Font P, Sosa Carrizo ED, Mallet-Ladeira S, Massou S, Parella T, Miqueu K, Amgoune A, Ribas X, Bourissou D (2018) Cyclometalated gold(iii) complexes: noticeable differences between (N, C) and (P, C) ligands in migratory insertion. Chem Sci 9:3932–3940. https://doi.org/10.1039/c7sc04899h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Langseth E, Nova A, Tråseth EA, Rise F, Øien S, Heyn RH, Tilset M (2014) A gold exchange: a mechanistic study of a reversible, formal ethylene insertion into a gold(III)–oxygen bond. J Am Chem Soc 136:10104–10115. https://doi.org/10.1021/ja504554u

    Article  CAS  PubMed  Google Scholar 

  45. Cadge JA, Gates PJ, Bower JF, Russell CA (2022) Migratory insertion of CO into a Au–C bond. J Am Chem Soc 144:19719–19725. https://doi.org/10.1021/jacs.2c10432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhoyare VW, Sosa Carrizo ED, Chintawar CC, Gandon V, Patil NT (2023) Gold-catalyzed Heck reaction. J Am Chem Soc 145:8810–8816. https://doi.org/10.1021/jacs.3c02544

    Article  CAS  PubMed  Google Scholar 

  47. Bhoyare VW, Tathe AG, Gandon V, Patil NT (2023) Unlocking the chain-walking process in gold catalysis. Angew Chem Int Ed 62:e202312786. https://doi.org/10.1002/anie.202312786

    Article  CAS  Google Scholar 

  48. Budzelaar PHM, Bochmann M, Landrini M, Rocchigiani L (2024) Gold-catalysed Heck reactions: fact or fiction? https://doi.org/10.26434/chemrxiv-2024-3rldf

Download references

Acknowledgements

MBT thanks SERB, New Delhi, for providing a postdoctoral fellowship (PDF/2022/002920)

Funding

Generous financial support by the Science and Engineering Research Board (SERB), New Delhi (CRG/2022/000195, SCP/2022/000063, and JCB/2022/000052), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M. B. T. wrote the manuscript. N.T.P. proofread and endorsed the content.

Corresponding author

Correspondence to Nitin T. Patil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoke, M.B., Patil, N.T. Unusual selectivity in gold-catalyzed intermolecular Heck reactions. Gold Bull 56, 159–165 (2023). https://doi.org/10.1007/s13404-024-00342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-024-00342-w

Keywords

Navigation