Halder S, Ghosh S (2014) Wetland macrophytes in purification of water. Int J Environ Sci 5:432–437. https://doi.org/10.6088/ijes.2014050100037
CAS
Article
Google Scholar
Siahouei RA, Zaeimdar M, Moogouei R, Jozi SA (2020) Potential of cyperus alternifolius, amaranthus retroflexus, closia cristata and bambusa vulgaris to phytoremediate emerging contaminants and phytodesalination; insight to floating beds technology. Casp J Environ Sci 18:309–317. https://doi.org/10.22124/cjes.2020.4277
Heidari S, Fotouhi Ghazvini R, Zavareh M, Kafi M (2018) Physiological responses and phytoremediation ability of Eastern Coneflower (Echinacea purpurea) for crude oil contaminated soil. Casp J Environ Sci 16:149–164. https://doi.org/10.22124/cjes.2018.2957
McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. https://doi.org/10.1016/S0958-1669(03)00060-0
CAS
Article
Google Scholar
Alizadeh SM, Mirarab-Razi J (2016) Growth and accumulation responses of Populus nigra L. exposed to hexavalent chromium excess. Casp J Environ Sci 14:253–261
Google Scholar
Gholamipour Fard K, Ghasemnezhad M, Zakizadeh H et al (2016) Evaluation of six cold-season turfgrasses responses to lead phytotoxicity for screening tolerant species. Casp J Environ Sci 14:215–226
Google Scholar
Van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146. https://doi.org/10.1016/j.envexpbot.2014.11.010
CAS
Article
Google Scholar
Singh S (2012) Phytoremediation: a sustainable alternative for environmental challenges. Int J Green Herb Chem 1:133–139
da Gomes MA, C, Hauser-Davis RA, de Souza AN, Vitória AP, (2016) Metal phytoremediation: general strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf 134:133–147
CAS
Article
Google Scholar
Vangronsveld J, Herzig R, Weyens N et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794. https://doi.org/10.1007/s11356-009-0213-6
CAS
Article
Google Scholar
Wang L, Ji B, Hu Y et al (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025
CAS
Article
Google Scholar
Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245. https://doi.org/10.1021/es00005a015
CAS
Article
Google Scholar
Zhang H, Dang Z, Zheng LC, Yi XY (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol 6:249–258. https://doi.org/10.1007/BF03327629
Article
Google Scholar
Vural A (2017) Gold and silver content of plant Helichrysum arenarium, popularly known as the golden flower, growing in Gümüşhane, NE Turkey. Acta Physica Polonica A 132:978–980. https://doi.org/10.12693/APhysPolA.132.978
Radusiene J (2002) Phenotypic variation in Helichrysum arenarium ( L.) Moench from natural habitats. Biologija 1:65–68
Google Scholar
Jarzycka A, Lewińska A, Gancarz R, Wilk KA (2013) Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions. J Photochem Photobiol, B 128:50–57. https://doi.org/10.1016/j.jphotobiol.2013.07.029
CAS
Article
Google Scholar
Lemberkovics É, Czinner E, Szentmihályi K et al (2002) Comparative evaluation of Helichrysi flos herbal extracts as dietary sources of plant polyphenols, and macro- and microelements. Food Chem 78:119–127. https://doi.org/10.1016/S0308-8146(02)00204-2
CAS
Article
Google Scholar
Vural A (2018) Relationship between the geological environment and element accumulation capacity of Helichrysum arenarium. Arab J Geosci 11:258. https://doi.org/10.1007/s12517-018-3609-0
CAS
Article
Google Scholar
Konieczynski P (2013) Principal component analysis in interpretation of the results of HPLC-ELC, HPLC-DAD and essential elemental contents obtained for medicinal plant extracts. Cent Eur J Chem 11:519–526. https://doi.org/10.2478/s11532-012-0197-9
CAS
Article
Google Scholar
Vural A (2020) Investigation of the relationship between rare earth elements, trace elements, and major oxides in soil geochemistry. Environ Monit Assess 192:124. https://doi.org/10.1007/s10661-020-8069-9
CAS
Article
Google Scholar
Vural A (2015) Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey. Environ Monit Assess 187:486. https://doi.org/10.1007/s10661-015-4708-y
CAS
Article
Google Scholar
Warne RT (2014) A primer on multivariate analysis of variance (MANOVA) for behavioral scientists. Pract Assess Res Eval 19:1–10
Google Scholar
Brooks R (1998) Phytochemistry of hyperaccumulator. In: Brooks R (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, Ar- chaeology, mineral exploration and phytomining. CAB International, U.K., pp 15–53
Google Scholar
Vural A (2014) Trace/heavy metal accumulation in soil and in the shoots of acacia tree, Gümüşhane-Turkey. Bull Miner Res Explor 148:85–106
Vural A (2013) Assessment of Heavy Metal Accumulation in the roadside soil and plants of Robinia pseudoacacia, in Gumushane, Northeastern Turkey. Ekoloji 22:1–10. https://doi.org/10.5053/ekoloji.2013.891
CAS
Article
Google Scholar
Vural A, Şahin E (2012) Gümüşhane Şehir Merkezinden Geçen Karayolunda Ağır Metal Kirliliğine Ait İlk Bulgular. Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü Dergisi 2:21–35
Vural A (2015) Contamination assessment of heavy metals associated with an alteration area: Demirören Gumushane, NE Turkey. J Geol Soc India 86:215–222. https://doi.org/10.1007/s12594-015-0301-9
CAS
Article
Google Scholar
Aremu MO, Ogundola AF, Oyebamiji OT (2013) Phytoextraction potential of Vetiveria zizanioides on heavy metals. Eur Sci J 9:89–96
Google Scholar
Israila YZ, Bola AE, Emmanuel GC, Ola IS (2015) Phytoextraction of heavy metals by Vetivera zizanioides, Cymbopogon citrates and Helianthus annuls. Am J Appl Chem 3:1–5. https://doi.org/10.11648/j.ajac.20150301.11
Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126. https://doi.org/10.1080/01904168109362867
CAS
Article
Google Scholar
Güner S, Yazıcı E, Dursun Ö, Akyürek S (2012) Gümüşhane-Demirören Sahasının Maden Jeolojisi Raporu. Ankara
Vural A (2016) Demirören (Gümüşhane) Fe-Skarn Yatağının Jeolojik, Jeokimyasal ve Köken Özellikleri Açısından İncelenmesi
Vural A (2020) Demirören/Gümüşhane-Türkiye Kuvars Porfiri Kayacı ve İlişkili Skarn-Metasomatizmanın Jeokimyasal Özellikleri. Euroasia J Math Eng Nat Med Sci 7:97–121. https://doi.org/10.38065/euroasiaorg.394
Karslı O, Chen B, Aydin F, Şen C (2007) Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos 98:67–96. https://doi.org/10.1016/j.lithos.2007.03.005
CAS
Article
Google Scholar
Vural A, Erdoğan M (2014) Eski Gümüşhane Kırkpavli Alterasyon Sahasında Toprak Jeokimyası. Gümüşhane Üniversitesi, Fen Bilim Enstitüsü Derg 4:1–15
Vural A, Kaygusuz A (2021) Geochronology, petrogenesis and tectonic importance of Eocene I-type magmatism in the Eastern Pontides NE Turkey. Arab J Geosci 14:467. https://doi.org/10.1007/s12517-021-06884-z
CAS
Article
Google Scholar
Vural A, Sipahi F (2013) Demirören (Gümüşhane) Altın Zenginleşme Sahasında Toprak ve Bitki Jeokimyası Çalışması. Sonuç Raporu. Gümüşhane Üniversitesi BAP Koordinatörlüğü (Proje No: 13.F511.02.2). Gümüşhane, Türkiye
Davies BE (1997) Deficiencies and toxicities of trace elements and micronutrients in tropical soils: limitations of knowledge and future research needs. Environ Toxicol Chem 16:75–83. https://doi.org/10.1002/etc.5620160108
CAS
Article
Google Scholar
Rashed MN, Awadallah RM (1998) Trace elements in faba bean (Vicia fabaL) plant and soil as determined by atomic absorption spectroscopy and ion selective electrode. J Sci Food Agric 77:18–24. https://doi.org/10.1002/(SICI)1097-0010(199805)77:1%3c18::AID-JSFA978%3e3.0.CO;2-G
CAS
Article
Google Scholar
Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press
Google Scholar
Vural A (2014) Toprak ve Akasya ağacı sürgünlerindeki iz/ağır metal dağılımı, Gümüşhane-Türkiye. MTA Dergisi 148:85–106
Google Scholar
Vural A (2016) Assessment of sessile oak (Quercus petraea L.) leaf as bioindicator for exploration geochemistry. Acta Physica Polonica A 130:191–193. https://doi.org/10.12693/APhysPolA.130.191
Sheoran V, Sheoran AS, Poonia P (2013) Phytomining of gold: a review. J Geochem Explor 128:42–50. https://doi.org/10.1016/j.gexplo.2013.01.008
CAS
Article
Google Scholar
Kitayev NA, Zhukova RI (1980) Relationship between the concentrations of gold in soil, Forest bedding and the bark of trees. Soviet Geol Geophys 21:118–121
Google Scholar
Ebbs SD, Kolev SD, Piccinin RCR et al (2010) Solubilization of heavy metals from gold ore by adjuvants used during gold phytomining. Miner Eng 23:819–822. https://doi.org/10.1016/j.mineng.2010.06.002
CAS
Article
Google Scholar
Piccinin RCR, Ebbs SD, Reichman SM et al (2007) A screen of some native Australian flora and exotic agricultural species for their potential application in cyanide-induced phytoextraction of gold. Miner Eng 20:1327–1330. https://doi.org/10.1016/j.mineng.2007.07.005
CAS
Article
Google Scholar
Wilson-Corral V, Anderson C, Rodriguez-Lopez M et al (2011) Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Miner Eng 24:1488–1494. https://doi.org/10.1016/j.mineng.2011.07.014
CAS
Article
Google Scholar
Soylak M, Elci L, Dogan M (2000) A sorbent extraction procedure for the preconcentration of gold, silver and palladium on an activated carbon column. Anal Lett 33:513–525. https://doi.org/10.1080/00032710008543070
CAS
Article
Google Scholar
Merchant B (1998) Gold, the noble metal and the paradoxes of its toxicology. Biologicals 26:49–59. https://doi.org/10.1006/biol.1997.0123
CAS
Article
Google Scholar