Skip to main content

Formation of gold hollow spheres by rapid heating–cooling process

Abstract

Although gold hollow spheres show unique advantages in fields like catalysis, the available synthesis strategies have low atom and economic efficiency. In this paper, Au hollow spheres were produced by combining simple wet chemical method and rapid heating–cooling process, in which rapid temperature rise caused Au evaporation and rapid cooling froze gold “bubbles.” The control experiments confirmed the presence of supports which limit the growth and sintering of Au nanoparticles to some extent, and slower heating rate inhibits the hollowing of gold sphere. This work provides a new strategy for the rapid and facile synthesis of Au hollow spheres, offering a wide range of possibilities for energy storage and biosensing applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Pedireddy S, Lee HK, Tjiu WW, Phang IY, Tan HR, Chua SQ, Ling XY (2014) One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance. Nat Commun 5:4947. https://doi.org/10.1038/ncomms5947

    CAS  Article  Google Scholar 

  2. Guo M, He J, Li Y, Ma S, Sun X (2016) One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J Hazard Mater 310:89–97. https://doi.org/10.1016/j.jhazmat.2016.02.016

    CAS  Article  Google Scholar 

  3. Gonzalez-Rubio G, Milagres de Oliveira T, Albrecht W, Diaz-Nunez P, Castro-Palacio JC, Prada A, Guerrero-Martinez A (2020) Formation of hollow gold nanocrystals by nanosecond laser irradiation. J Phys Chem Lett 11(3):670–677. https://doi.org/10.1021/acs.jpclett.9b03574

    CAS  Article  Google Scholar 

  4. Dung NT, Linh NT, Chi DL, Hoa NT, Hung NP, Ha NT, Lu LT (2021) Optical properties and stability of small hollow gold nanoparticles. RSC Adv 11(22):13458–13465. https://doi.org/10.1039/D0RA09417J

    CAS  Article  Google Scholar 

  5. Rao BL, Gowda M, Asha S, Byrappa K, Narayana B, Somashekar R, Sangappa Y (2017) Rapid synthesis of gold nanoparticles using silk fibroin: characterization, antibacterial activity, and anticancer properties. Gold Bull 50(4):289–297. https://doi.org/10.1007/s13404-017-0218-8

    CAS  Article  Google Scholar 

  6. Tu MH, Sun T, Grattan KTV (2014) LSPR optical fibre sensors based on hollow gold nanostructures. Sensors Actuators B Chem 191:37–44. https://doi.org/10.1016/j.snb.2013.09.094

    CAS  Article  Google Scholar 

  7. Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B 110(40):19935–19944. https://doi.org/10.1021/jp062136a

    CAS  Article  Google Scholar 

  8. Paidari S, Ibrahim SA (2021) Potential application of gold nanoparticles in food packaging: a mini review. Gold Bull 54:31–36. https://doi.org/10.1007/s13404-021-00290-9

    Article  Google Scholar 

  9. Blanch AJ, Doblinger M, Rodriguez-Fernandez J (2015) Simple and rapid high-yield synthesis and size sorting of multibranched hollow gold nanoparticles with highly tunable NIR plasmon resonances. Small 11(35):4550–4559. https://doi.org/10.1002/smll.201500095

    CAS  Article  Google Scholar 

  10. Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed Engl 53(7):1756–1789. https://doi.org/10.1002/anie.201300441

    CAS  Article  Google Scholar 

  11. Xu ZC, Shen CM, Xiao CW, Yang TZ, Zhang HR, Li JQ, Gao HJ (2007) Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology 18(11):115608. https://doi.org/10.1088/0957-4484/18/11/115608

    CAS  Article  Google Scholar 

  12. Zakharov YA, Pugachev VM, Kolmykov RP, Russakov DM, Dodonov VG, Obraztsova II, Ivanov NN (2017) Morphology of Ni (core)/Au (shell) nanoparticles. Gold Bull 50(3):225–234. https://doi.org/10.1007/s13404-017-0212-1

    CAS  Article  Google Scholar 

  13. Chen F, Yao Y, Nie A, Xu S, Dai J, Hitz E, Hu L (2018) High-temperature atomic mixing toward well-dispersed bimetallic electrocatalysts. Adv Energy Mater 8(25):1800466. https://doi.org/10.1002/aenm.201800466

    CAS  Article  Google Scholar 

  14. Raj V, Alex S (2021) Non-enzymatic colorimetric sensor for cardiac troponin I (cTnI) based on self-assembly of gold nanorods on heparin. Gold Bull 54(1):1–7. https://doi.org/10.1007/s13404-020-00287-w

    CAS  Article  Google Scholar 

  15. Kim M, Jeong GH, Lee KY, Kwon K, Han SW (2008) Fabrication of nanoporous superstructures through hierarchical self-assembly of nanoparticles. J Mater Chem 18(19):2208–2212. https://doi.org/10.1039/B801864B

    CAS  Article  Google Scholar 

  16. Ding Y, Erlebacher J (2003) Nanoporous metals with controlled multimodal pore size distribution. J Phys Chem Soc 125(26):7772–7773. https://doi.org/10.1021/ja035318g

    CAS  Article  Google Scholar 

  17. Sun Y, Xia Y (2003) Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett 3(11):1569–1572. https://doi.org/10.1021/nl034765r

    CAS  Article  Google Scholar 

  18. Nishio K, Masuda H (2011) Anodization of gold in oxalate solution to form a nanoporous black film. Angew Chem Int Edit 123(7):1641–1645. https://doi.org/10.1002/ange.201005700

    Article  Google Scholar 

  19. Castro-Palacio JC, Ladutenko K, Prada A, Gonzalez-Rubio G, Diaz-Nunez P, Guerrero-Martinez A, Rivera A (2020) Hollow gold nanoparticles produced by femtosecond laser irradiation. J Phys Chem Lett 11(13):5108–5114. https://doi.org/10.1021/acs.jpclett.0c01233

    CAS  Article  Google Scholar 

  20. Nakaso K, Shimada M, Okuyama K, Deppert K (2002) Evaluation of the change in the morphology of gold nanoparticles during sintering. J Aerosol Sci 33(7):1061–1074. https://doi.org/10.1016/S0021-8502(02)00058-7

    CAS  Article  Google Scholar 

  21. González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Guerrero-Martínez A (2017) Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 358(6363):640–644. https://doi.org/10.1126/science.aan8478

    CAS  Article  Google Scholar 

  22. González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzan LM (2015) Femtosecond laser controlled tip-to-tip assembly and welding of gold nanorods. Nano Lett 15(12):8282–8288. https://doi.org/10.1021/acs.nanolett.5b03844

    CAS  Article  Google Scholar 

  23. Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163. https://doi.org/10.1021/jp000679t

    CAS  Article  Google Scholar 

  24. Nguyen SC, Zhang Q, Manthiram K, Ye X, Lomont JP, Harris CB, Weller H, Alivisatos AP (2016) Study of heat transfer dynamics from gold nanorods to the environment via time resolved infrared spectroscopy. ACS Nano 10:2144–2151. https://doi.org/10.1021/acsnano.5b06623

    CAS  Article  Google Scholar 

  25. Li X, Huang B, Li R, Zhang HP, Qin W, Qiao Z, Yang G (2019) Laser-ignited relay-domino-like reactions in graphene oxide/CL-20 films for high-temperature pulse preparation of Bi-layered photothermal membranes. Small 15(20):1900338. https://doi.org/10.1002/smll.201900338

    CAS  Article  Google Scholar 

  26. Yao Y, Huang Z, Xie P, Lacey SD, Jacob RJ, Xie H, Hu L (2018) Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359(6383):1489–1494. https://doi.org/10.1126/science.aan5412

    CAS  Article  Google Scholar 

  27. Yao Y, Huang Z, Hughes LA, Gao J, Li T, Morris D, Hu L (2021) Extreme mixing in nanoscale transition metal alloys. Matter 4(7):2340–2353. https://doi.org/10.1016/j.matt.2021.04.014

    CAS  Article  Google Scholar 

  28. Huang Z, Yao Y, Pang Z (2020) Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports. Nat Commun 11:6373. https://doi.org/10.1038/s41467-020-20084-5

    CAS  Article  Google Scholar 

  29. Dou S, Xu J, Cui X, Liu W, Zhang Z, Deng Y, Chen Y (2020) High-temperature shock enabled nanomanufacturing for energy-related applications. Adv Energy Mater 10(33):2001331. https://doi.org/10.1002/aenm.202001331

    CAS  Article  Google Scholar 

  30. Nanda KK, Maisels A, Kruis FE (2008) Surface tension and sintering of free gold nanoparticles. J Phys Chem C 112(35):13488–13491. https://doi.org/10.1021/jp803934n

    CAS  Article  Google Scholar 

  31. Lou Y, Xu J, Zhang Y, Pan C, Dong Y, Zhu Y (2020) Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms. MT Nano 12:2588–8420. https://doi.org/10.1016/j.mtnano.2020.100093

    Article  Google Scholar 

  32. Khoury C, Matthew MM, Oz MG (2021) The effect of surface phase oxides on the properties of supported metals and catalysis. Catalysis 33:153–180. https://doi.org/10.1039/9781839163128-00153

    CAS  Article  Google Scholar 

  33. Rong H, Ji S, Zhang J (2020) Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat Commun 11:5884. https://doi.org/10.1038/s41467-020-19571-6

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52001151), the Supporting Fund for Young Researchers from Lanzhou University, Science and Technology Foundation for Youths of Gansu Province (21JR7RA518), and the Natural Science Foundation of Gansu Province (20JR5RA283).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinli Kou or Tao Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5772 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, J., Zheng, Q. et al. Formation of gold hollow spheres by rapid heating–cooling process. Gold Bull (2022). https://doi.org/10.1007/s13404-022-00311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13404-022-00311-1

Keywords

  • Gold nanoparticles
  • Gold hollow spheres
  • Joule heating