Skip to main content

The potential of marine-based gold nanomaterials in cancer therapy: a mini-review

Abstract

Cancer is still one of the most common causes of death today despite advances in its detection and treatment. The present article reviews the application of marine-based gold nanoparticles in the diagnosis and treatment of cancer. The main data were collected from original research articles on the application of different marine-based gold nanoparticles in detecting and imaging cancer cells as well as in drug delivery systems and treatment of cancer. The results show the excellent anticancer potential of both gold nanoparticles and natural marine products. The most studied marine-based gold nanomaterial was chitosan-based ones, in which the role of chitosan is a stabilizer not an anticancer agent. Despite the excellent anticancer potential of different marine natural products, limited studies have been conducted using gold nanoparticles in their composition in cancer therapy. Moreover, most of these studies are related to their application as a drug delivery system not an anticancer drug. Although there are serious challenges in the application of nanoparticles in medicine, marine-based gold nanomaterials may promise an interesting novel strategy in the oncology field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Not applicable.

References

  1. Abaza A, Hegazy E, Mahmoud GA, Elsheikh B (2018) Characterization and antitumor activity of chitosan/poly (vinyl alcohol) blend doped with gold and silver nanoparticles in treatment of prostatic cancer model. J Pharm Pharmacol 2018:659–667

    Google Scholar 

  2. Akinyelu J, Singh M (2019) Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. Appl Nanosci 9:7–17

    CAS  Google Scholar 

  3. Akinyelu J, Oladimeji O, Singh M (2021) Lactobionic acid-chitosan functionalised gold-coated poly (lactide-co-glycolide) nanoparticles for hepatocyte targeted gene delivery. Adv Nat Sci: Nanosci Nanotechnol 11:045017

    Google Scholar 

  4. Al-Musawi S, Albukhaty S, Al-Karagoly H, Almalki F (2021) Design and Synthesis of multi-functional superparamagnetic core-gold shell nanoparticles coated with chitosan and folate for targeted antitumor therapy. Nanomaterials 11:32

    CAS  Google Scholar 

  5. Al-Jubouri MBA, Isam SR, Hussein SM, Machuca-Contreras F (2021) Recitation of quran and music to reduce chemotherapy-induced anxiety among adult patients with cancer: a clinical trial. Nurs Open 8:1606–1614

    Google Scholar 

  6. Alam A, Rampes S, Patel S, Hana Z, Ma D (2021) Anesthetics or anesthetic techniques and cancer surgical outcomes: a possible link. Korean J Anesthesiol 74:191

    Google Scholar 

  7. Alijagic A, Barbero F, Gaglio D, Napodano E, Benada O, Kofroňová O, Puntes VF, Bastús NG, Pinsino A (2021) Gold nanoparticles coated with polyvinylpyrrolidone and sea urchin extracellular molecules induce transient immune activation. J Hazard Mater 402:123793

    CAS  Google Scholar 

  8. AlNadhari S, Al-Enazi NM, Alshehrei F, Ameen F (2021) A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ Res 194:110672

    CAS  Google Scholar 

  9. Antonietti M, Göltner C (1997) Superstructures of functional colloids: chemistry on the nanometer scale. Angew Chem Int Ed 36:910–928

    Google Scholar 

  10. Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA (2014) Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Ther 2014

  11. Babu B, Palanisamy S, Vinosha M, Anjali R, Kumar P, Pandi B, Tabarsa M, You S, Prabhu NM (2020) Bioengineered gold nanoparticles from marine seaweed Acanthophora spicifera for pharmaceutical uses: antioxidant, antibacterial, and anticancer activities. Bioprocess Biosyst Eng 43:2231–2242

    CAS  Google Scholar 

  12. Bandyopadhyay A, Roy B, Shaw P, Mondal P, Mondal MK, Chowdhury P, Bhattacharya S, Chattopadhyay A (2020) Chitosan-gold nanoparticles trigger apoptosis in human breast cancer cells in vitro. Nucleus 64:1–14

    Google Scholar 

  13. Banihashem S, Nikpour Nezhati M, Panahi HA, Shakeri-Zadeh A (2020) Synthesis of novel chitosan-g-PNVCL nanofibers coated with gold-gold sulfide nanoparticles for controlled release of cisplatin and treatment of MCF-7 breast cancer. Int J Polym Mater Polym Biomater 69:1197–1208

    CAS  Google Scholar 

  14. Barone C, Bertoldo M, Capelli R, Dinelli F, Maccagnani P, Martucciello N, Mauro C, Pagano S (2021) Electric Transport in gold-covered sodium–alginate free-standing foils. Nanomaterials 11:565

    CAS  Google Scholar 

  15. Bashari MH, Arsydinilhuda FZ, Ilhamsyah RS, Nugrahani AD, Nurdin RA, Kartika A, Huda F, Abdurahman M, Putri T, Qomarilla N (2021) The ethanol extract of marine sponge Aaptos suberitoides suppress cell viability, cell proliferation and cell migration in HER2-positive breast cancer cell line. Asian Pac J Cancer Prev 22:25–32

    Google Scholar 

  16. Bazzi R, Brenier A, Perriat P, Tillement O (2005) Optical properties of neodymium oxides at the nanometer scale. J Lumin 113:161–167

    CAS  Google Scholar 

  17. Biswal A, Sethy PK, Swain SK (2021) Change in orientation of polyacrylic acid and chitosan networks by imprintment of gold nanoparticles. Polym-Plast Technol Mater 60:182–194

    CAS  Google Scholar 

  18. Bonardd S, Saldías C, Ramírez O, Radić D, Recio FJ, Urzúa M, Leiva A (2019) A novel environmentally friendly method in solid phase for in situ synthesis of chitosan-gold bionanocomposites with catalytic applications. Carbohydr Polym 207:533–541

    CAS  Google Scholar 

  19. Borges da Silva E, Brayner Cavalcanti M, Ferreira Da Silva CS, de Salazar e Fernandes T, Azevedo Melo J, Lucena L, Maciel Netto A, Amaral A, (2021) Micronucleus assay for predicting side effects of radiotherapy for cervical cancer. Biotech Histochem 96:60–66

    CAS  Google Scholar 

  20. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684

    CAS  Google Scholar 

  21. Bulut O, Yilmaz MD (2021) Catalytic evaluation of biocompatible chitosan-stabilized gold nanoparticles on oxidation of morin. Carbohydr Polym 258:117699

    CAS  Google Scholar 

  22. Burns CJ, Juberg DR (2021) Cancer and occupational exposure to pesticides: an umbrella review. Int Arch Occup Environ Health 25:1–13

    Google Scholar 

  23. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17

    CAS  Google Scholar 

  24. Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2:1001–1014

    CAS  Google Scholar 

  25. Chaturvedi VK, Singh A, Singh VK, Singh MP (2019) Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab 20:416–429

    CAS  Google Scholar 

  26. Chen S-M, Meng L-H, Ding J (2010) New microtubule-inhibiting anticancer agents. Expert Opin Investig Drugs 19:329–343

    CAS  Google Scholar 

  27. Chen X, Han W, Zhao X, Tang W, Wang F (2019) Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci Rep 9:1–10

    Google Scholar 

  28. Chokradjaroen C, Rujiravanit R, Theeramunkong S, Saito N (2020) Effect of electrical discharge plasma on cytotoxicity against cancer cells of N. O-carboxymethyl chitosan-stabilized gold nanoparticles. Carbohydr Polym 237:116162

    CAS  Google Scholar 

  29. Choosang J, Khumngern S, Thavarungkul P, Kanatharana P, Numnuam A (2021) An ultrasensitive label-free electrochemical immunosensor based on 3D porous chitosan–graphene–ionic liquid–ferrocene nanocomposite cryogel decorated with gold nanoparticles for prostate-specific antigen. Talanta 224:121787

    CAS  Google Scholar 

  30. Chu Y-C, Chang C-H, Liao H-R, Cheng M-J, Wu M-D, Fu S-L, Chen J-J (2021) Rare Chromone derivatives from the marine-derived penicillium citrinum with anti-cancer and anti-inflammatory activities. Mar Drugs 19:25

    CAS  Google Scholar 

  31. Cryer AM, Thorley AJ (2019) Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 198:189–205

    CAS  Google Scholar 

  32. Dai X, Zhao X, Liu Y, Chen B, Ding X, Zhao N, Xu FJ (2021) Controlled synthesis and surface engineering of janus chitosan-gold nanoparticles for photoacoustic imaging-guided synergistic gene/photothermal therapy. Small 17:2006004

    CAS  Google Scholar 

  33. De Vries DJ, Beart PM (1995) Fishing for drugs from the sea: status and strategies. Trends Pharmacol Sci 16:275–279

    Google Scholar 

  34. Deng P, Sun M, Zhao W-Y, Hou B, Li K, Zhang T, Gu F (2021) Circular RNA circVAPA promotes chemotherapy drug resistance in gastric cancer progression by regulating miR-125b-5p/STAT3 axis. World J Gastroenterol 27:487

    CAS  Google Scholar 

  35. Divakaran D, Lakkakula JR, Thakur M, Kumawat MK, Srivastava R (2019) Dragon fruit extract capped gold nanoparticles: synthesis and their differential cytotoxicity effect on breast cancer cells. Mater Lett 236:498–502

    CAS  Google Scholar 

  36. Fathy MM, Mohamed FS, Elbialy N, Elshemey WM (2018) Multifunctional chitosan-capped gold nanoparticles for enhanced cancer chemo-radiotherapy: an invitro study. Physica Med 48:76–83

    Google Scholar 

  37. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    CAS  Google Scholar 

  38. Flores M, Ammon M, Forteza I (2011) Isolation of marine mollusk-associated bacteria for use as anti bacterial and anti-cancer leads. Annual PAASE Meeting and Symposium: Science and Engineering Education, Research and Innovation Toward National Development and Global Competitiveness, Quezon City (Philippines), 15–18 Jun 2011

  39. Ganesan P, Noda K, Manabe Y, Ohkubo T, Tanaka Y, Maoka T, Sugawara T, Hirata T (2011) Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. Biochimica et Biophysica Acta (BBA) - General Subjects 1810:497–503

  40. Ge H, Shi M, Ma M, Lian X-Y, Zhang Z (2021) Evaluation of the antiproliferative activity of 106 marine microbial metabolites against human lung cancer cells and potential antiproliferative mechanism of purpuride G. Bioorganic Med Chem Lett 39:127915

    CAS  Google Scholar 

  41. Ge H, Zhang D, Shi M, Lian X, Zhang Z (2021) Antiproliferative Activity and potential mechanism of marine-sourced Streptoglutarimide H against lung cancer cells. Mar Drugs 19:79

    CAS  Google Scholar 

  42. Ghorbani-Vaghei R, Veisi H, Aliani MH, Mohammadi P, Karmakar B (2021) Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of 4-nitrophenol in water. J Mol Liq 327:114868

    CAS  Google Scholar 

  43. Hashmi ASK, Hutchings GJ (2006) Gold catalysis Angew Chem Int Ed 45:7896–7936

    Google Scholar 

  44. Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK (2020) Homogeneous and heterogeneous gold catalysis for materials science. Chem Rev 121:9113–9163

    Google Scholar 

  45. Ho TT-T, Dang C-H, Huynh TK-C, Hoang TK-D, Nguyen T-D (2021) In situ synthesis of gold nanoparticles on novel nanocomposite lactose/alginate: recyclable catalysis and colorimetric detection of Fe (III). Carbohydr Polym 251:116998

    CAS  Google Scholar 

  46. Horo H, Bhattacharyya S, Mandal B, Kundu LM (2021) Synthesis of functionalized silk-coated chitosan-gold nanoparticles and microparticles for target-directed delivery of antitumor agents. Carbohydr Polym 258:117659

    CAS  Google Scholar 

  47. Hosseinabadi OK, Behnam MA, Khoradmehr A, Emami F, Sobhani Z, Dehghanian AR, Firoozabadi AD, Rahmanifar F, Vafaei H, Tamadon A-D (2020) Benign prostatic hyperplasia treatment using plasmonic nanoparticles irradiated by laser in a rat model. Biomed Pharmacother 127:110118

    Google Scholar 

  48. Hussein MAM, Baños FGD, Grinholc M, Dena ASA, El-Sherbiny IM, Megahed M (2020) Exploring the physicochemical and antimicrobial properties of gold-chitosan hybrid nanoparticles composed of varying chitosan amounts. Int J Biol Macromol 162:1760–1769

    Google Scholar 

  49. Hussein MAM, Grinholc M, Dena ASA, El-Sherbiny IM, Megahed M (2021) Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract. Carbohydr Polym 256:117498

    CAS  Google Scholar 

  50. Irigoien X, Huisman J, Harris RP (2004) Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429:863–867

    CAS  Google Scholar 

  51. Ishibashi F, Fukuda T, Zha S, Hashirano A, Hirao S, Iwao M (2021) Concise synthesis and in vitro anticancer activity of benzo [g][1] benzopyrano [4, 3-b] indol-6 (13 H)-ones (BBPIs), topoisomerase I inhibitors based on the marine alkaloid lamellarin. Biosci Biotechnol Biochem 85:181–191

    Google Scholar 

  52. Islam S, Bakhtiar H, Alshoaibi A, Haider Z, Yaacob SNS, Riaz S, Naseem S (2021) Structural and antimicrobial response of chitosan capped gold nanostructures employing two different synthetic routes. Opt Mater 112:110741

    CAS  Google Scholar 

  53. Jaber N, Al-Akayleh F, Abdel-Rahem RA, Al-Remawi M (2021) Characterization ex vivo skin permeation and pharmacological studies of ibuprofen lysinate-chitosan-gold nanoparticles. J Drug Deliv Sci Technol 62:102399

    CAS  Google Scholar 

  54. Jafari H, Hassanpour M, Akbari A, Rezaie J, Gohari G, Reza Mahdavinia G, Jabbari E (2021) Characterization of pH-sensitive chitosan/hydroxypropyl methylcellulose composite nanoparticles for delivery of melatonin in cancer therapy. Mater Lett 282:128818

    CAS  Google Scholar 

  55. Jayeoye TJ, Eze FN, Sudarshan S, Olatunde OO, Benjakul S, Rujiralai T (2021) Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int J Biol Macromol 179:196–205

    CAS  Google Scholar 

  56. Jayeoye TJ, Sirimahachai U, Rujiralai T (2021) Sensitive colorimetric detection of ascorbic acid based on seed mediated growth of sodium alginate reduced/stabilized gold nanoparticles. Carbohydr Polym 255:117376

    CAS  Google Scholar 

  57. Kalaivani R, Maruthupandy M, Muneeswaran T, Singh M, Sureshkumar S, Anand M, Ramakritinan C, Quero F, Kumaraguru A (2020) Chitosan mediated gold nanoparticles against pathogenic bacteria, fungal strains and MCF-7 cancer cells. Int J Biol Macromol 146:560–568

    CAS  Google Scholar 

  58. Khademi Z, Lavaee P, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM (2020) Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohydr Polym 248:116735

    CAS  Google Scholar 

  59. Khalifa SA, Elias N, Farag MA, Chen L, Saeed A, Hegazy M-EF, Moustafa MS, El-Wahed A, Al-Mousawi SM, Musharraf SG (2019) Marine natural products: a source of novel anticancer drugs. Mar Drugs 17:491

    CAS  Google Scholar 

  60. Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443

    CAS  Google Scholar 

  61. Kim G-Y, Kim W-J, Choi YH (2011) Pectenotoxin-2 from marine sponges: a potential anti-cancer agent—a review. Mar Drugs 9:2176–2187

    CAS  Google Scholar 

  62. Kim G, Bahl M (2021) Assessing risk of breast cancer: a review of risk prediction models. J Breast Imaging 3:144–155

    Google Scholar 

  63. Kurt-Kızıldoğan A, Akarsu N, Otur Ç, Kivrak A, Aslan-Ertas N, Arslan S, Mutlu D, Konus M, Yılmaz C, Cetin D (2021) A novel 4H-chromen-4-One derivative from marine Streptomyces ovatisporus S4702T as potential antibacterial and anti-cancer agent. Anti-Cancer Agents Med Chem. https://doi.org/10.2174/1871520621666210311085748

    Article  Google Scholar 

  64. Lees B, Hampton JM, Trentham-Dietz A, Newcomb P, Spencer R (2021) A population-based study of causes of death after endometrial cancer according to major risk factors. Gynecol Oncol 160:655–659

    Google Scholar 

  65. Lei F, Xi X, Rachagani S, Seshacharyulu P, Talmon GA, Ponnusamy MP, Batra SK, Bronich TK (2021) Nanoscale platform for delivery of active IRINOX to combat pancreatic cancer. J Control Release 330:1229–1243

    CAS  Google Scholar 

  66. Li F, He T, Wu S, Peng Z, Qiu P, Tang X (2021) Visual and colorimetric detection of uric acid in human serum and urine using chitosan stabilized gold nanoparticles. Microchem J 164:105987

    CAS  Google Scholar 

  67. Li Y, Wang Z, Ajani JA, Song S (2021) Drug resistance and Cancer stem cells. J Cell Commun Signal 19:1–11

    Google Scholar 

  68. Li Z, Tan S, Li S, Shen Q, Wang K (2017) Cancer drug delivery in the nano era: an overview and perspectives. Oncol Rep 38:611–624

    CAS  Google Scholar 

  69. Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K (2021) High-performance thin layer chromatography-based phytochemical and bioactivity characterisation of anticancer endophytic fungal extracts derived from marine plants. J Pharm Biomed Anal 193:113702

    CAS  Google Scholar 

  70. Liu L, Jiang H, Wang X (2021) Alkaline phosphatase-responsive Zn2+ double-triggered nucleotide capped gold nanoclusters/alginate hydrogel with recyclable nanozyme capability. Biosens Bioelectron 173:112786

    CAS  Google Scholar 

  71. Hamed M, M, S Abdelftah L, (2019) Biosynthesis of gold nanoparticles using marine Streptomyces griseus isolate (M8) and evaluating its antimicrobial and anticancer activity. Egypt J Aquat Biol Fish 23:173–184

    Google Scholar 

  72. Ma K, Cheng Y, Wei X, Chen D, Zhao X, Jia P (2021) Gold embedded chitosan nanoparticles with cell membrane mimetic polymer coating for pH-sensitive controlled drug release and cellular fluorescence imaging. J Biomater Appl 35:857–868

    CAS  Google Scholar 

  73. MacDonald V (2009) Chemotherapy: managing side effects and safe handling. Can Vet J 50:665

    Google Scholar 

  74. Madhusudhan A, Reddy GB, Venkatesham M, Veerabhadram G, Kumar DA, Natarajan S, Yang M-Y, Hu A, Singh SS (2014) Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 15:8216–8234

    CAS  Google Scholar 

  75. Manier KK, Maibach HI (2021) Skin cancer knowledge, awareness, and perception. in: ethnic skin and hair and other cultural considerations. Springer Nature, pp 43–53

  76. Manivasagan P, Bharathiraja S, Bui NQ, Lim IG, Oh J (2016) Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells. Int J Pharm 511:367–379

    CAS  Google Scholar 

  77. Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2:143–148

    CAS  Google Scholar 

  78. Martínez Andrade KA, Lauritano C, Romano G, Ianora A (2018) Marine microalgae with anti-cancer properties. Mar Drugs 16:165

    Google Scholar 

  79. Mayer AMS, Gustafson KR (2006) Marine pharmacology in 2003–2004: anti-tumour and cytotoxic compounds. Eur J Cancer 42:2241–2270

    CAS  Google Scholar 

  80. Mehrnia SS, Hashemi B, Mowla SJ, Nikkhah M, Arbabi A (2021) Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles. Radiat Oncol 16:33

    CAS  Google Scholar 

  81. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66:271–289

    Google Scholar 

  82. Min Y, Mao C, Xu D, Wang J, Liu Y (2010) Gold nanorods for platinum based prodrug delivery. Chem Commun 46:8424–8426

    CAS  Google Scholar 

  83. Mintmire J, White C (1995) Electronic and structural properties of carbon nanotubes. Carbon 33:893–902

    CAS  Google Scholar 

  84. Mirrahimi M, Abed Z, Beik J, Shiri I, Dezfuli AS, Mahabadi VP, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A (2019) A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res 143:178–185

    CAS  Google Scholar 

  85. Mirrahimi M, Beik J, Mirrahimi M, Alamzadeh Z, Teymouri S, Mahabadi VP, Eslahi N, Tazehmahalleh FE, Ghaznavi H, Shakeri-Zadeh A (2020) Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int J Biol Macromol 158:617–626

    CAS  Google Scholar 

  86. Mori G, Pasca MR (2021) Gut microbial signatures in sporadic and hereditary colorectal cancer. Int J Mol Sci 22:1312

    CAS  Google Scholar 

  87. Motia S, Bouchikhi B, El Bari N (2021) An electrochemical molecularly imprinted sensor based on chitosan capped with gold nanoparticles and its application for highly sensitive butylated hydroxyanisole analysis in foodstuff products. Talanta 223:121689

    CAS  Google Scholar 

  88. Namasivayam SKR, Venkatachalam G, Bharani RA (2020) Immuno biocompatibility and anti-quorum sensing activities of chitosan-gum acacia gold nanocomposite (CS-GA-AuNC) against Pseudomonas aeruginosa drug-resistant pathogen. Sustain Chem Pharm 17:100300

    Google Scholar 

  89. Nazar M, Talebi AR, Sharifabad MH, Abbasi A, Khoradmehr A, Danafar AH (2016) Acute and chronic effects of gold nanoparticles on sperm parameters and chromatin structure in Mice. Int J Reprod Biomed 14:637

    Google Scholar 

  90. Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A Biomedical Applications of functionalized gold nanoparticles: a review. J Clust Sci 1–16

  91. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    CAS  Google Scholar 

  92. Palanisamy SK, Arumugam V, Rajendran S, Ramadoss A, Nachimuthu S, Peter DM, Sundaresan U (2019) Chemical diversity and anti-proliferative activity of marine algae. Nat Prod Res 33:2120–2124

    CAS  Google Scholar 

  93. Parsonnet J (1995) Bacterial infection as a cause of cancer. Environ Health Perspect 103(Suppl 8):263–268

    Google Scholar 

  94. Patil MP, Kang M-j, Niyonizigiye I, Singh A, Kim J-O, Seo YB, Kim G-D (2019) Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B Biointerfaces 183:110455

    CAS  Google Scholar 

  95. Pilleron S, Soto-Perez-de-Celis E, Vignat J, Ferlay J, Soerjomataram I, Bray F, Sarfati D (2021) Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int J Cancer Res 148:601–608

    CAS  Google Scholar 

  96. Potara M, Maniu D, Astilean S (2009) The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. Nanotechnology 20:315602

    Google Scholar 

  97. Puente C, Sánchez-Domínguez M, Brosseau CL, López I (2021) Silver-chitosan and gold-chitosan substrates for surface-enhanced Raman spectroscopy (SERS): effect of nanoparticle morphology on SERS performance. Mater Chem Phys 260:124107

    CAS  Google Scholar 

  98. Qi S-S, Sun J-H, Yu H-H, Yu S-Q (2017) Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 24:1909–1926

    CAS  Google Scholar 

  99. Raeis-Hosseini N, Rho J (2021) Solution-Processed flexible biomemristor based on gold-decorated chitosan. AACS Appl Mater Interfaces 13:5445–5450

    CAS  Google Scholar 

  100. Rastgoo-Lahrood A, Martsinovich N, Lischka M, Eichhorn J, Szabelski P, Nieckarz D, Strunskus T, Das K, Schmittel M, Heckl WM (2016) From Au–thiolate chains to thioether sierpinski triangles: the versatile surface chemistry of 1, 3, 5-Tris (4-mercaptophenyl) benzene on Au (111). ACS Nano 10:10901–10911

    CAS  Google Scholar 

  101. Rodrigo AP, Mendes VM, Manadas B, Grosso AR, Alves de Matos AP, Baptista PV, Costa PM, Fernandes AR (2021) Specific antiproliferative properties of proteinaceous toxin secretions from the marine Annelid Eulalia sp. onto Ovarian Cancer Cells. Mar Drugs 19:31

    CAS  Google Scholar 

  102. Sadalage PS, Patil RV, Havaldar DV, Gavade SS, Santos AC, Pawar KD (2021) Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J Nanobiotechnology 19:84

    CAS  Google Scholar 

  103. Sadeghi M, Shabani-Nooshabadi M (2021) High sensitive titanium/chitosan-coated nanoporous gold film electrode for electrochemical determination of acetaminophen in the presence of piroxicam. Prog Org Coat 151:106100

    CAS  Google Scholar 

  104. Sang Y, Chen X, Zhang L, Li D, Xu H (2021) Electrospun polymeric nanofiber decorated with sea urchin-like gold nanoparticles as an efficient and stable SERS platform. J Colloid Interface Sci 590:125–133

    CAS  Google Scholar 

  105. Sarfaraj HM, Sheeba F, Saba A, Khan M (2012) Marine natural products: a lead for Anti-cancer. IJMS 41:27–39

    CAS  Google Scholar 

  106. Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, Wang M-H (2021) pH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment. Carbohydr Polym 262:117907

    CAS  Google Scholar 

  107. Shaabani E, Sharifiaghdam M, De Keersmaecker H, De Rycke R, De Smedt S, Faridi-Majidi R, Braeckmans K, Fraire JC (2021) Layer by layer assembled chitosan-coated gold nanoparticles for enhanced siRNA delivery and silencing. Int J Mol Sci 22:831

    CAS  Google Scholar 

  108. Shahrokhi S, Zuhair M, Mohagheghi M, Ghazanfari T, Ebtekar M (2009) Shark cartilage modulates immune responses in stage III breast cancer patients. Int J Hematol Oncol Stem Cell Res 21–28

  109. Shin HJ, Kim TS, Lee H-S, Park JY, Choi I-K, Kwon HJ (2008) Streptopyrrolidine, an angiogenesis inhibitor from a marine-derived Streptomyces sp. KORDI-3973. Phytochemistry 69:2363–2366

    CAS  Google Scholar 

  110. Shunmugam R, Balusamy SR, Kumar V, Menon S, Lakshmi T, Perumalsamy H (2021) Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. J King Saud Univ Sci 33:101260

    Google Scholar 

  111. Simon-Levert A, Menniti C, Soulère L, Genevière A-M, Barthomeuf C, Banaigs B, Witczak A (2010) Marine natural meroterpenes: synthesis and antiproliferative activity. Mar Drugs 8:347–358

    CAS  Google Scholar 

  112. Singh M, Saurav K, Majouga A, Kumari M, Kumar M, Manikandan S, Kumaraguru A (2015) The cytotoxicity and cellular stress by temperature-fabricated polyshaped gold nanoparticles using marine macroalgae, Padina gymnospora. Biotechnol Appl Biochem 62:424–432

    CAS  Google Scholar 

  113. Srinivas N, Malla RR, Kumar KS, Sailesh AR (2021) Environmental carcinogens and their impact on female-specific cancers. a theranostic and precision medicine approach for female-specific cancers. Elsevier 249–262

  114. Su B-C, Hung G-Y, Tu Y-C, Yeh W-C, Lin M-C, Chen J-Y (2021) Marine antimicrobial peptide TP4 Exerts anticancer effects on human synovial sarcoma cells via calcium overload, reactive oxygen species production and mitochondrial hyperpolarization. Mar Drugs 19:93

    CAS  Google Scholar 

  115. Sun I-C, Ahn C-H, Kim K, Emelianov S (2019) Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents. J Biomed Opt 24:121903

    CAS  Google Scholar 

  116. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F, Global cancer statistics, (2020) GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Google Scholar 

  117. Sutton E, Lane J, Davis M, Walsh E, Neal D, Hamdy F, Mason M, Staffurth J, Martin R, Metcalfe C (2021) Men’s experiences of radiotherapy treatment for localized prostate cancer and its long-term treatment side effects: a longitudinal qualitative study. Cancer Causes Control 32:261–269

    CAS  Google Scholar 

  118. Takakusagi Y, Yoshida D, Kusano Y, Kano K, Anno W, Tsuchida K, Mizoguchi N, Serizawa I, Katoh H, Imura K (2021) Dosimetric comparison between carbon-ion radiotherapy and photon radiotherapy for stage I esophageal cancer. In Vivo 35:447–452

    CAS  Google Scholar 

  119. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608

    CAS  Google Scholar 

  120. Tenório FS, do Amaral Montanheiro TL, dos Santos AMI, dos Santos Silva M, Lemes AP, Tada DB, (2021) Chitosan hydrogel covalently crosslinked by gold nanoparticle: eliminating the use of toxic crosslinkers. J Appl Polym Sci 138:49819

    Google Scholar 

  121. Terasaki M, Takahashi S, Nishimura R, Kubota A, Kojima H, Ohta T, Hamada J, Kuramitsu Y, Maeda H, Miyashita K (2021) A Marine Carotenoid of fucoxanthinol accelerates the growth of human pancreatic cancer PANC-1 cells. Nutr Cancer 1–16

  122. Ullah M, Akbar A, Yannarelli G (2020) Clinical applications of RNA editing technology for the early detection of cancer and future directions. Technol Cancer Res Treat 19:1533033820964194

    CAS  Google Scholar 

  123. Ullah M, Kodam SP, Mu Q, Akbar A (2021) Microbubbles versus extracellular vesicles as therapeutic cargo for targeting drug delivery. ACS Nano 15:3612–3620

    CAS  Google Scholar 

  124. van der Sloot KW, Tiems JL, Visschedijk MC, Festen EA, van Dullemen HM, Weersma RK, Kats-Ugurlu G, Dijkstra G (2021) Cigarette smoke increases risk for colorectal neoplasia in inflammatory bowel disease. Clin Gastroenterol Hepatol. https://doi.org/10.1016/j.cgh.2021.01.015

    Article  Google Scholar 

  125. Vidal R, Alberola-Borràs J-A, Habisreutinger SN, Gimeno-Molina J-L, Moore DT, Schloemer TH, Mora-Seró I, Berry JJ, Luther JM (2021) Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat Sustain 4:277–285

    Google Scholar 

  126. Virgili AH, Laranja DC, Malheiros PS, Pereira MB, Costa TM, de Menezes EW (2021) Nanocomposite film with antimicrobial activity based on gold nanoparticles, chitosan and aminopropylsilane. Surf Coat Technol 415:127086

    CAS  Google Scholar 

  127. Wang X, Yang L, Chen Z, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58:97–110

    Google Scholar 

  128. Wongkhieo S, Numdee K, Lam EW, Choowongkomon K, Kongsema M, Khongkow M (2021) Liposomal thiostrepton formulation and its effect on breast cancer growth inhibition. J Pharm Sci 110:2508–2516

    CAS  Google Scholar 

  129. Xie Q, Wen T, Yang A, Zhang X, Chen B, Meng J, Liu J, Gu N, Xu H (2021) A contrast examination of proinflammatory effects on kidney function for γ-Fe2O3 NP and gadolinium dimeglumine. Int J Nanomed 16:2271

    Google Scholar 

  130. Xu JW, Yan Y, Wang L, Wu D, Ye NK, Chen SH, Li F (2021) Marine bioactive compound dieckol induces apoptosis and inhibits the growth of human pancreatic cancer cells PANC-1. J Biochem Mol Toxicol 35:e22648

    CAS  Google Scholar 

  131. Yen H-j, Young Y-a, Tsai T-n, Cheng K-m, Chen X-a, Chen Y-c, Chen C-c, Young J-j (2018) Positively charged gold nanoparticles capped with folate quaternary chitosan: synthesis, cytotoxicity, and uptake by cancer cells. Carbohydr Polym 183:140–150

    CAS  Google Scholar 

  132. Zandi K, Tajbakhsh S, Nabipour I, Rastian Z, Yousefi F, Sharafian S, Sartavi K (2010) In vitro antitumor activity of Gracilaria corticata (a red alga) against Jurkat and molt-4 human cancer cell lines. Afr J Biotechnol 9:6787–6790

    Google Scholar 

  133. Zhao X, Wei L, Pang G, Xie J (2021) A novel GABABR1a receptor electrochemical biosensor based on gold nanoparticles chitosan-horseradish peroxidase. Electroanalysis 33:1606–1614

    CAS  Google Scholar 

  134. Zhou H, Sun J, Wu J, Wei H, Zhou X (2021) Biodegradable nanosonosensitizers with the multiple modulation of tumor microenvironment for enhanced sonodynamic therapy. Int J Nanomed 16:2633

    Google Scholar 

  135. Zhu F, Tan G, Zhong Y, Jiang Y, Cai L, Yu Z, Liu S, Ren F (2019) Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. J Nanobiotechnology 17:44

    Google Scholar 

Download references

Funding

The authors received financial support from Iran’s National Elites Foundation (INEF) under program of “Allame Tabatabaei Post-Doc Fellowship.” The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: N.B. and A.T.; methodology: N.B. and A.T.; investigation: N.B. and A.K.; writing—original draft preparation: N.B.; writing—review and editing: A.K., I.N., M.U., and A.T.; supervision: I.N., M.U., and A.T.; project administration: I.N. and A.T.; funding acquisition,: I.N. and N.B. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Iraj Nabipour, Amin Tamadon or Mujib Ullah.

Ethics declarations

Ethics approval and consent to participate

Not available.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baghban, N., Khoradmehr, A., Nabipour, I. et al. The potential of marine-based gold nanomaterials in cancer therapy: a mini-review. Gold Bull 55, 53–63 (2022). https://doi.org/10.1007/s13404-021-00304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-021-00304-6

Keywords

  • Gold nanoparticles
  • Marine
  • Drug delivery
  • Imaging
  • Cancer
  • Detection