Skip to main content

Fibers covered with 3D interconnected network of Au nanostructures and their application in SERS detection

Abstract

A simple template-free method was developed for the fabrication of fibers whose surfaces were covered by a three-dimensional interconnected network of Au nanostructures (3D-NW AuNSs) without additional stabilizer. The EDS and XPS measurements confirmed the metallic nature of the formed 3D gold nanowire networks on the fiber surface. The morphology of these 3D-NW AuNSs can be controlled by the experimental parameters, such as reaction time, roughness of the glass fiber surface, HAuCl4, and sodium citrate concentration. The 3D gold nanowire networks showed excellent uniformity. Additionally, the nanofiber was used to accurately and reliably detect methyl red (MR), crystal violet (CV), and acridine orange (AO), which can be detected as low as 1, 10, and 5 μg/L, respectively. Since the proposed strategy is simple, cost-effective, and reproducible for the mass production of network-like gold film–covered nanofiber, it is expected to play an important role in the development of trace analytical devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Lu L, Eychmüller A, Kobayashi A, Hirano Y, Yoshida K, Kikkawa Y, Tawa K, Ozaki Y (2006) Langmuir 22:2605–2609

    CAS  Google Scholar 

  2. Hu X, Xu Z, Li K, Fang F, Wang L (2015) Appl Surf Sci 355:1168–1174

    CAS  Google Scholar 

  3. Wang A, Kong X (2015) Materials 8:3024–3052

    CAS  Google Scholar 

  4. Zhang X, Zhao J, Whitney AV, Elam JW, Van Duyne RP (2006) J Am Chem Soc 128:10304–10309

    CAS  Google Scholar 

  5. Zhang D, Wang G, Yuan Y, Li Y, Jiang S, Wang Y, Ye K, Cao D, Yan P, Cheng K (2016) Int J Hydrogen Energ 41:11593–11598

    CAS  Google Scholar 

  6. Plesco I, Strobel J, Schütt F, Himcinschi C, Ben Sedrine N, Monteiro T, Correia MR, Gorceac L, Cinic B, Ursaki V, Marx J, Fiedler B, Mishra YK, Kienle L, Adelung R, Tiginyanu I (2018) Sci Rep-Uk 8

  7. Bui QB, Nguyen DM, Nguyen TML, Lee KK, Kim HG, Ko SC, Jeong H (2018) J Electrochem Sci Te 9:229–237

    CAS  Google Scholar 

  8. Lin X, Cui Y, Xu Y, Ren B, Tian Z (2009) Anal Bioanal Chem 394:1729–1745

    CAS  Google Scholar 

  9. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail I, Qari HA, Umar K, Mohamad IM (2020) Front Chem 8:341

    CAS  Google Scholar 

  10. Lin T, Lin C, Liu H, Sheu J, Hung W (2011) Chem Commun 47:2044

    CAS  Google Scholar 

  11. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936

    Google Scholar 

  12. Elahi N, Kamali M, Baghersad MH (2018) Talanta 184:537–556

    CAS  Google Scholar 

  13. Si S, Liang W, Sun Y, Huang J, Ma W, Liang Z, Bao Q, Jiang L (2016) Adv Funct Mater 26:8137–8145

    CAS  Google Scholar 

  14. Li J, Zhang Y, Ding S, Panneerselvam R, Tian Z (2017) Chem Rev 117:5002–5069

    CAS  Google Scholar 

  15. Fang J, Ma X, Cai H, Song X, Ding B (2006) Nanotechnology 17:5841–5845

    CAS  Google Scholar 

  16. Wang CR, Yan XZ, Yu L, Li JD (2014) Advanced Materials Research 2951:944–947

    Google Scholar 

  17. Fan M, Andrade GF, Brolo AG (2011) Anal Chim Acta 693:7–25

    CAS  Google Scholar 

  18. Junisu BA, Sun Y (2020) ACS Applied Nano Materials 3:7950–7962

    CAS  Google Scholar 

  19. Suzuki M, Nakajima K, Kimura K, Fukuoka T, Mori Y (2006) MRS Online Proc Libr 951:935

    Google Scholar 

  20. Xia Y, Xiao H (2012) J Raman Spectrosc 43:469–473

    CAS  Google Scholar 

  21. Yang L, Chen Y, Shen Y, Yang M, Li X, Han X, Jiang X, Zhao B (2018) Talanta 179:37–42

    CAS  Google Scholar 

  22. Yingying S, Wan L, Liqing Z, Fengyong L, Yunfei X, Weirong Y, Wenqiu L, Zhaosheng L (2021) Food Chem. 357, 129741

  23. Xue Y, Scaglione F, Paschalidou EM, Rizzi P, Battezzati L (2016) Chem Phys Lett 665:6–9

    CAS  Google Scholar 

  24. Wang Z, Yue HY, Huang S, Yu ZM, Gao X, Chen HT, Wang WQ, Song SS, Guan EH, Zhang HJ (2019) Microchim Acta 186:1–8

    Google Scholar 

  25. Yi Z, Luo J, Tan X, Yi Y, Yao W, Kang X, Ye X, Zhu W, Duan T, Yi Y, Tang Y (2015) Sci Rep-Uk 5:1–10

    CAS  Google Scholar 

  26. Li B, Shi YE, Cui J, Liu Z, Zhang X, Zhan J (2016) Anal Chim Acta 923:66–73

    CAS  Google Scholar 

  27. Pua A, Huang Y, Goh RMV, Ee K, Tan LP, Cornuz M, Liu SQ, Lassabliere B, Yu B (2021) Talanta 235, 122793

  28. Malik AK, Kaur V, Verma N (2006) Talanta 68:842–849

    CAS  Google Scholar 

  29. Qiu L, Liu Q, Zeng X, Liu Q, Hou X, Tian Y, Wu L (2018) Talanta 187:13–18

    CAS  Google Scholar 

  30. Frens G (1973) Nature Physical science (London) 241:20–22

    CAS  Google Scholar 

  31. Khaing Oo MK, Guo Y, Reddy K, Liu J, Fan X (2012) Analytical chemistry (Washington) 84, 3376–3381

  32. Moro D, Ulian G, Valdrè G (2018) Measurement 129:211–217

    Google Scholar 

  33. Wang T, Hu X, Wang J, Dong S (2008) Talanta 75:455–460

    CAS  Google Scholar 

  34. Mikhlin Y, Likhatski M, Tomashevich Y, Romanchenko A, Erenburg S, Trubina S (2010) J Electron Spectrosc 177:24–29

    CAS  Google Scholar 

  35. Meyer R, Lemire C, Shaikhutdinov SK, Freund HJ (2004) Gold Bull 37:72–124

    CAS  Google Scholar 

  36. Jiang Z, Zhang W, Jin L, Yang X, Xu F, Zhu J, Huang W (2007) The Journal of Physical Chemistry C 111:12434–12439

    CAS  Google Scholar 

  37. Pei L, Mori K, Adachi M (2004) Langmuir 20:7837–7843

    CAS  Google Scholar 

  38. Driver M, Li Y, Zheng J, Decker E, Julian McClements D, He L (2014) The Analyst 139, 3352–3355

  39. Biggs S, Mulvaney P, Zukoski CF, Grieser F (1994) J Am Chem Soc 116:9150–9157

    CAS  Google Scholar 

  40. Roozbehi M, Sangpour P, Khademi A, Moshfegh AZ (2011) Appl Surf Sci 257:3291–3297

    CAS  Google Scholar 

  41. Maillard M, Motte L, Ngo AT, Pileni MP (2000) J Phys Chem B 104:11871–11877

    CAS  Google Scholar 

  42. Jin R, Egusa S, Scherer NF (2004) J Am Chem Soc 126:9900–9901

    CAS  Google Scholar 

  43. BV Enustun JT (1963) J Am Chem Soc 85, 3317–3328

  44. Liu Zhen CLZL, Jing Chao SXYZ, Long Yitao FJ (2014) Nanoscale 6, 2567–2572

  45. He L, Chen T, Labuza TP (2014) Food Chem 148:42–46

    CAS  Google Scholar 

  46. Kohl D (2017) (Informa, Overland Park)

  47. Khan SB, Faisal M, Rahman MM, Akhtar K, Asiri AM, Khan A, Alamry KA (2013) Int J Electrochem Sci 8:7284–7297

    CAS  Google Scholar 

  48. Zbair M, Anfar Z, Ait Ahsaine H, El Alem N, Ezahri M (2018) J Environ Manage 206, 383–397

  49. Khan SA, Arshad T, Faisal M, Shah Z, Shaheen K, Suo H, Asiri AM, Akhtar K, Khan SB (2019) J Mater Sci: Mater Electron 30:15299–15312

    CAS  Google Scholar 

  50. Bell S, Bisset A, Dines TJ (1998) J Raman Spectrosc 29:447–462

    CAS  Google Scholar 

  51. Giustetto R, Idone A, Diana E (2017) J Raman Spectrosc 48:507–517

    CAS  Google Scholar 

  52. Kleinman SL, Ringe E, Valley N, Wustholz KL, Phillips E, Scheidt KA, Schatz GC, Van Duyne RP (2011) J Am Chem Soc 133:4115–4122

    CAS  Google Scholar 

  53. Harraz FA, Ismail AA, Bouzid H, Al-Sayari SA, Al-Hajry A, Al-Assiri MS (2015) Appl Surf Sci 331:241–247

    CAS  Google Scholar 

  54. Lai K, Zhang Y, Du R, Zhai F, Rasco BA, Huang Y (2011) Sens Instrum Food Qual Saf 5:19–24

    Google Scholar 

  55. Zimmerman F, Hossenfelder B, Panitz JC, Wokaun A (1994) J Phys Chem 1952(98):12796–12804

    Google Scholar 

  56. Selva Sharma A, Ilanchelian M (2014) Photochem Photobiol Sci 13, 1741–1752

  57. Lee ASL, Li Y (1994) J Raman Spectrosc 25:209–214

    CAS  Google Scholar 

  58. Kandakkathara A, Utkin I, Fedosejevs R, Kieffer J (1900) SPIE- International Society for Optical Engineering, 8412, 84120E-84120E-10

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (31960500) and the Science and Technology Project of Education Department of Jiangxi Province (170282).

Funding

The work was supported by the National Natural Science Foundation of China (31960500) and the Science and Technology Project of Education Department of Jiangxi Province (170282).

Author information

Authors and Affiliations

Authors

Contributions

Cuiping Wang and Huan Zhang came up with the experimental design, conducted the experiments, and analyzed the results. Cuiping Wang and Chunrong Wang drafted the manuscript. Chunrong Wang also supervised the whole project and interpreted the obtained results.

Corresponding author

Correspondence to Chunrong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2137 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, H. & Wang, C. Fibers covered with 3D interconnected network of Au nanostructures and their application in SERS detection. Gold Bull 55, 31–40 (2022). https://doi.org/10.1007/s13404-021-00303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-021-00303-7

Keywords

  • Three-dimensional interconnected network
  • Glass fiber
  • Au
  • Surface-enhanced Raman spectroscopy