Skip to main content
Log in

Gold carbene complexes and beyond: new avenues in gold(I)-carbon coordination chemistry

  • Review Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The different coordination modes in carbon-gold(I) complexes are spotlighted with a focus on gold(I). The emergence of gold carbene complexes and their critical discussion in the community is presented, and an overview of their bonding fundamentals and synthetic procedures is given. Several intriguing and sometimes highly reactive gold-carbon coordination complexes that were recently synthesised and isolated are reviewed and a critical outlook into their potential applications is provided. This includes vinylidene and higher cumulenylidene complexes, free carbenes with gold substituents, carbodicarbene complexes, and non-Fischer/Schrock sesquicarbene complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Scheme 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Hashmi ASK (2004) Homogeneous catalysis by gold. Gold Bull 37:51–65. https://doi.org/10.1007/bf03215517

    Article  CAS  Google Scholar 

  2. Hashmi ASK (2003) Homogeneous gold catalysts and alkynes: a successful liaison. Gold Bull 36:3–9. https://doi.org/10.1007/bf03214859

    Article  CAS  Google Scholar 

  3. Gorin DJ, Toste FD (2007) Relativistic effects in homogeneous gold catalysis. Nature 446:395–403. https://doi.org/10.1038/nature05592

    Article  CAS  Google Scholar 

  4. Rudolph M, Hashmi ASK (2012) Gold catalysis in total synthesis—an update. Chem Soc Rev 41:2448–2462. https://doi.org/10.1039/C1CS15279C

    Article  CAS  Google Scholar 

  5. Ye L-W, Zhu X-Q, Sahani RL, Xu Y, Qian, P-C, Liu R-S (2020) Nitrene transfer and carbene transfer in gold catalysis. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c00348

  6. Witzel S, Hashmi ASK, Xie J (2021) Light in gold catalysis. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c00841

  7. Hendrich CM, Bongartz LM, Hoffmann MT, Zschieschang U, Borchert JW, Sauter D, Krämer P, Rominger F, Mulks FF, Rudolph M, Dreuw A, Klauk H, Hashmi ASK (2021) Gold catalysis meets materials science – a new approach to π-extended indolocarbazoles. Adv Synth Catal 363:549–557. https://doi.org/10.1002/adsc.202001123

    Article  Google Scholar 

  8. Cheng X, Zhang L (2020) Designed bifunctional ligands in cooperative homogeneous gold catalysis. CCS Chem 2:1989–2002. https://doi.org/10.31635/ccschem.020.202000454

    Article  CAS  Google Scholar 

  9. Zheng Z, Ma Z, Cheng X, Zhao K, Gutman K, Li T, Zhang L (2021) Homogeneous gold-catalyzed oxidation reactions. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c00774

  10. Pope WJ, Gibson CS (1907) CCII.—the alkyl compounds of gold. J Chem Soc Trans 91:2061–2066. https://doi.org/10.1039/CT9079102061

    Article  Google Scholar 

  11. Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43:4412–4456. https://doi.org/10.1002/anie.200300624

    Article  CAS  Google Scholar 

  12. Mohamed AA, Abdou HE, Fackler JP Jr (2010) Coordination chemistry of gold(II) with amidinate, thiolate and ylide ligands. Coord Chem Rev 254:1253–1259. https://doi.org/10.1016/j.ccr.2009.10.017

    Article  CAS  Google Scholar 

  13. Preiß S, Förster C, Otto S, Bauer M, Müller P, Hinderberger D, Hashemi Haeri H, Carella L, Heinze K (2017) Structure and reactivity of a mononuclear gold(II) complex. Nat Chem 9:1249–1255. https://doi.org/10.1038/nchem.2836

    Article  CAS  Google Scholar 

  14. For further reading, I recommend the recent broader review of gold’s coordination chemistry: Herrera RP, Gimeno MC (2021) Main avenues in gold coordination chemistry. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c00930

  15. Ito Y, Sawamura M, Hayashi T (1986) Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J Am Chem Soc 108:6405–6406. https://doi.org/10.1021/ja00280a056

    Article  CAS  Google Scholar 

  16. Sawamura M, Ito Y (1992) Catalytic asymmetric synthesis by means of secondary interaction between chiral ligands and substrates. Chem Rev 92:857–871. https://doi.org/10.1021/cr00013a005

    Article  CAS  Google Scholar 

  17. Teles JH, Schulz M (1997) BASF AG Patent WO-A1 9721648 [Chem. Abstr. 127:121499]

  18. Teles JH, Brode S, Chabanas M (1998) Cationic gold(I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Angew Chem Int Ed 37:1415–1418. https://doi.org/10.1002/(SICI)1521-3773(19980605)37:10%3c1415::AID-ANIE1415%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  19. Hashmi ASK, Frost TM, Bats JW (2000) Highly selective gold-catalyzed arene synthesis. J Am Chem Soc 122:11553–11554. https://doi.org/10.1021/ja005570d

    Article  CAS  Google Scholar 

  20. Dyker G (2000) An eldorado for homogeneous catalysis? Angew Chem 39:4237–4239. https://doi.org/10.1002/1521-3773(20001201)39:23%3c4237::AID-ANIE4237%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  21. Jiménez-Núñez E, Echavarren AM (2008) Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. Chem Rev 108:3326–3350. https://doi.org/10.1021/cr0684319

    Article  CAS  Google Scholar 

  22. Fürstner A (2009) Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chem Soc Rev 38:3208–3221. https://doi.org/10.1039/b816696j

    Article  CAS  Google Scholar 

  23. Fürstner A, Stelzer F, Szillat H (2001) Platinum-catalyzed cycloisomerization reactions of enynes. J Am Chem Soc 123:11863–11869. https://doi.org/10.1021/ja0109343

    Article  CAS  Google Scholar 

  24. Raubenheimer HG, Esterhuysen MW, Timoshkin A, Chen Y, Frenking G (2002) Electrophilic addition of Ph3PAu+ to anionic alkoxy Fischer-type carbene complexes: a novel approach to metal-stabilized bimetallic vinyl ether complexes. Organometallics 21:3173–3181. https://doi.org/10.1021/om020048g

    Article  CAS  Google Scholar 

  25. Parks JE, Balch AL (1974) Gold carbene complexes: preparation, oxidation, and ligand displacement. J Organomet Chem 71:453–463. https://doi.org/10.1016/S0022-328X(00)95178-7

    Article  CAS  Google Scholar 

  26. Schneider SK, Herrmann WA, Herdtweck E (2003) Synthesis of the first gold(I) carbene complex with a gold-oxygen bond - first catalytic application of gold(I) complexes bearing N-heterocyclic carbenes. Z anorg allg Chemie 629:2363–2370. https://doi.org/10.1002/zaac.200300247

    Article  CAS  Google Scholar 

  27. A summary of established gold carbene complex syntheses can be found in the following publication and references therein: Wang Y, Muratore ME, Echavarren AM (2015) Gold carbene or carbenoid: is there a difference? Chem Eur J 21:7332–7339. https://doi.org/10.1002/chem.201406318

  28. A discussion of 1,2- vs. 1,3-rearrangement relevant to route c can be found in: Wang S, Zhang G, Zhang L (2010) Gold-catalyzed reaction of propargylic carboxylates via an initial 3,3-rearrangement. Synlett 5:692–706. https://doi.org/10.1055/s-0029-1219527

  29. The more recent α‐imino gold carbenes are discussed in this and the following reference: Tian X, Song L, Hashmi ASK (2020) α‐Imino gold carbene intermediates from readily accessible sulfilimines: intermolecular access to structural diversity. Chem Eur J 26:3197–3204. https://doi.org/10.1002/chem.201904869

  30. Aguilar E, Santamaría J (2019) Gold-catalyzed heterocyclic syntheses through α-imino gold carbene complexes as intermediates. Org Chem Front 6:1513–1540. https://doi.org/10.1039/C9QO00243J

    Article  CAS  Google Scholar 

  31. Salzer A (1999) Nomenclature of organometallic compounds of the transition elements (IUPAC Recommendations 1999). Pure Appl Chem 71:1557–1585. https://doi.org/10.1351/pac199971081557

    Article  CAS  Google Scholar 

  32. Muller P (1994) Glossary of terms used in physical organic chemistry: (IUPAC Recommendations 1994). Pure Appl Chem 66:1077–1184. https://doi.org/10.1351/pac199466051077

    Article  Google Scholar 

  33. Steinborn D, Becke S, Herzog R, Günther M, Kircheisen R, Stoeckli-Evans H, Bruhn C (1998) Heteroatomfunktionalisierte Methylgold-Komplexe: Synthese und Struktur von Chlormethyl(triphenylphosphin)- und Phenylthiomethyl(trimethylphosphin)gold. Z anorg allg Chemie 624:1303–1307. https://doi.org/10.1002/(SICI)1521-3749(199808)624:8%3c1303::AID-ZAAC1303%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  34. Tskhovrebov AG, Lingnau JB, Fürstner A (2019) Gold difluorocarbenoid complexes: spectroscopic and chemical profiling. Angew Chem 131:8926–8930. https://doi.org/10.1002/ange.201903957

    Article  Google Scholar 

  35. Seidel G, Fürstner A (2014) Structure of a reactive gold carbenoid. Angew Chem Int Ed 53:4807–4811. https://doi.org/10.1002/anie.201402080

    Article  CAS  Google Scholar 

  36. Fürstner A, Morency L (2008) On the nature of the reactive intermediates in gold-catalyzed cycloisomerization reactions. Angew Chem Int Ed 47:5030–5033. https://doi.org/10.1002/anie.200800934

    Article  CAS  Google Scholar 

  37. Harris RJ, Widenhoefer RA (2014) Synthesis, structure, and reactivity of a gold carbenoid complex that lacks heteroatom stabilization. Angew Chem Int Ed 53:9369–9371. https://doi.org/10.1002/anie.201404882

    Article  CAS  Google Scholar 

  38. Hussong MW, Rominger F, Krämer P, Straub BF (2014) Isolation of a non-heteroatom-stabilized gold-carbene complex. Angew Chem Int Ed 53:9372–9375. https://doi.org/10.1002/anie.201404032

    Article  CAS  Google Scholar 

  39. Joost M, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D (2014) Enhanced π-backdonation from gold(I): isolation of original carbonyl and carbene complexes. Angew Chem Int Ed 53:14512–14516. https://doi.org/10.1002/anie.201407684

    Article  CAS  Google Scholar 

  40. Minghetti G, Bonati F (1973) Bis(carbene) complexes of gold(I) and gold (III). J Organomet Chem 54:C62–C63. https://doi.org/10.1016/S0022-328X(00)84984-0

    Article  CAS  Google Scholar 

  41. Minghetti G, Bonati F, Banditelli G (1976) Carbene complexes of gold(III) and reactions of the coordinated ligand. Inorg Chem 15:1718–1720. https://doi.org/10.1021/ic50161a051

    Article  CAS  Google Scholar 

  42. Pujol A, Lafage M, Rekhroukh F, Saffon-Merceron N, Amgoune A, Bourissou D, Nebra N, Fustier-Boutignon M, Mézailles N (2017) A nucleophilic gold(III) carbene complex. Angew Chem Int Ed 56:12264–12267. https://doi.org/10.1002/anie.201706197

    Article  CAS  Google Scholar 

  43. Tian X, Song L, Farshadfar K, Rudolph M, Rominger F, Oeser T, Ariafard A, Hashmi ASK (2019) Acyl migration versus epoxidation in gold catalysis: facile, switchable, and atom-economic synthesis of acylindoles and quinoline derivatives. Angew Chem Int Ed 59:471–478. https://doi.org/10.1002/anie.201912334

    Article  CAS  Google Scholar 

  44. Zhang C, Wang G, Zhan L, Yang X, Wang J, Wie Y, Xu S, Shi M, Zhang J (2020) Gold(I) or gold(III) as real intermediate species in gold-catalyzed cycloaddition reactions of enynal/enynone? ACS Catal 10:6682–6690. https://doi.org/10.1021/acscatal.0c00220

    Article  CAS  Google Scholar 

  45. Savjani N, Roşca D-A, Schormann M, Bochmann M (2013) Gold(III)-olefin-komplexe. Angew Chem Int Ed 52:874–877. https://doi.org/10.1002/anie.201208356

    Article  CAS  Google Scholar 

  46. Rekhroukh F, Blons C, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D (2017) Gold(III)-arene complexes by insertion of olefins into gold-aryl bonds. Chem Sci 8:4539–4545. https://doi.org/10.1039/c7sc00145b

    Article  CAS  Google Scholar 

  47. Rodriguez J, Szalóki G, Sosa Carrizo ED, Saffon-Merceron N, Miqueu K, Bourissou D (2020) Gold(III) π-allyl complexes. Angew Chem Int Ed 59:1511–1515. https://doi.org/10.1002/anie.201912314

    Article  CAS  Google Scholar 

  48. Yang Y, Antoni P, Zimmer M, Sekine K, Mulks FF, Hu L, Zhang L, Rudolph M, Rominger F, Hashmi ASK (2019) Dual gold/silver catalysis involving alkynylgold(III) intermediates formed by oxidative addition and silver-catalyzed C−H activation for the direct alkynylation of cyclopropenes. Angew Chem Int Ed 58:5129–5133. https://doi.org/10.1002/anie.201812577

    Article  CAS  Google Scholar 

  49. Yang Y, Eberle L, Mulks FF, Wunsch JF, Zimmer M, Rominger F, Rudolph M, Hashmi ASK (2019) Trans influence of ligands on the oxidation of gold(I) complexes. J Am Chem Soc 141:17414–17420. https://doi.org/10.1021/jacs.9b09363

    Article  CAS  Google Scholar 

  50. Gimeno MC, Laguna A (1997) Three- and four-coordinate gold(I) complexes. Chem Rev 97:511–522. https://doi.org/10.1021/cr960361q

    Article  CAS  Google Scholar 

  51. Schmidbaur H, Schier A (2010) Gold η2-coordination to unsaturated and aromatic hydrocarbons: the key step in gold-catalyzed organic transformations. Organometallics 29:2–23. https://doi.org/10.1021/om900900u

    Article  CAS  Google Scholar 

  52. Harper MJ, Arthur CJ, Crosby J, Emmett EJ, Falconer RL, Fensham-Smith AJ, Gates PJ, Leman T, McGrady JE, Bower JF, Russell CA (2018) Oxidative addition, transmetalation, and reductive elimination at a 2,2′-bipyridyl-ligated gold center. J Am Chem Soc 140:4440–4445. https://doi.org/10.1021/jacs.8b01411

    Article  CAS  Google Scholar 

  53. Zhao X, Tian B, Yang Y, Si X, Mulks FF, Rudolph M, Rominger F, Hashmi ASK (2019) Gold-catalyzed stereoselective domino cyclization/alkynylation of N -propargylcarboxamides with benziodoxole reagents for the synthesis of alkynyloxazolines. Adv Synth Catal 361:3155–3162. https://doi.org/10.1002/adsc.201900264

    Article  CAS  Google Scholar 

  54. Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D (2017) Rational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides. Nat Commun 8:565. https://doi.org/10.1038/s41467-017-00672-8

  55. Joost M, Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D (2014) Facile oxidative addition of aryl iodides to gold(I) by ligand design: bending turns on reactivity. J Am Chem Soc 136:14654–14657. https://doi.org/10.1021/ja506978c

    Article  CAS  Google Scholar 

  56. Rodriguez J, Zeineddine A, Sosa Carrizo ED, Miqueu K, Saffon-Merceron N, Amgoune A, Bourissou D (2019) Catalytic Au(i)/Au(iii) arylation with the hemilabile MeDalphos ligand: Unusual selectivity for electron-rich iodoarenes and efficient application to indoles. Chem Sci 10:7183–7192. https://doi.org/10.1039/c9sc01954e

    Article  CAS  Google Scholar 

  57. Hashmi ASK (2014) Dual gold catalysis. Acc Chem Res 47:864–876. https://doi.org/10.1021/ar500015k

    Article  CAS  Google Scholar 

  58. Echavarren AM, Muratore ME, López-Carrillo V, Escribano-Cuesta A, Huguet N, Obradors C (2017) Gold-catalyzed cyclizations of alkynes with alkenes and arenes. Organic reactions. Hoboken: Wiley, pp 1–288

    Google Scholar 

  59. Hansmann MM, Rudolph M, Rominger F, Hashmi ASK (2013) Mechanistic switch in dual gold catalysis of diynes: C(sp)-H activation through bifurcation-vinylidene versus carbene pathways. Angew Chem Int Ed 52:2593–2598. https://doi.org/10.1002/anie.201208777

  60. Hansmann MM, Rominger F, Hashmi ASK (2013) Gold–allenylidenes – an experimental and theoretical study. Chem Sci 4:1552–1559. https://doi.org/10.1039/c3sc22227f

    Article  CAS  Google Scholar 

  61. Mulks FF, Antoni PW, Rominger F, Hashmi ASK (2018) Cyclopropenylgold(I) complexes as aurated carbenoids or quasi-carbenes. Adv Synth Catal 360:1810–1821. https://doi.org/10.1002/adsc.201701526

    Article  CAS  Google Scholar 

  62. Mulks FF, Faraji S, Rominger F, Dreuw A, Hashmi ASK (2018) Highly strained organogold complexes and their gold- or rhodium-catalyzed isomerizations. Chem Eur J 24:71–76. https://doi.org/10.1002/chem.201704652

    Article  CAS  Google Scholar 

  63. Hashmi ASK, Schuster AM, Litters S, Rominger F, Pernpointner M (2011) Gold catalysis: 1,3-oxazines by cyclisation of allene amides. Chem Eur J 17:5661–5667. https://doi.org/10.1002/chem.201100132

    Article  CAS  Google Scholar 

  64. Schmidbaur H, Gasser O (1976) Die ambidenten Ligandeigenschaften des Bis(trimethylphosphoranyliden)methans. Angew Chem 88:542–543. https://doi.org/10.1002/ange.19760881612

    Article  CAS  Google Scholar 

  65. Schmidbaur H, Gasser O, Hussain MS (1977) Doppelylide, I. Synthese und Eigenschaften von Hexamethyl- und sym-Tetramethyldiphenylcarbodiphosphoran. Chem Ber 110:3501–3507. https://doi.org/10.1002/cber.19771101105

    Article  CAS  Google Scholar 

  66. Gasser O, Schmidbaur H (1975) Bis(trimethylphosphoranylidene)methane, (CH3)3PCP(CH3)3. J Am Chem Soc 97:6281–6282. https://doi.org/10.1021/ja00854a077

    Article  CAS  Google Scholar 

  67. Schmidbaur H (2006) Phosphor-Ylide in der Koordinationssphäre von übergangsmetallen: Eine Bestandsaufnahme. Angew Chem 95:980–1000. https://doi.org/10.1002/ange.19830951205

    Article  Google Scholar 

  68. Tonner R, Frenking G (2007) C(NHC)2: zweibindige Kohlenstoff(0)-Verbindungen mit N-heterocyclischen Carbenliganden – theoretische Belege für eine Molekülklasse mit vielversprechenden Eigenschaften. Angew Chem 119:8850–8853. https://doi.org/10.1002/ange.200701632

    Article  Google Scholar 

  69. Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Synthesis of an extremely bent acyclic allene (A “Carbodicarbene” ): a strong donor ligand. Angew Chem Int Ed 47:3206–3209. https://doi.org/10.1002/anie.200705620

    Article  CAS  Google Scholar 

  70. Kaufhold O, Hahn FE (2008) Carbodicarbenes: divalent carbon(0) compounds. Angew Chem Int Ed 47:4057–4061. https://doi.org/10.1002/anie.200800846

    Article  CAS  Google Scholar 

  71. Fürstner A, Alcarazo M, Goddard R, Lehmann CW (2008) Coordination chemistry of ene-1,1-diamines and a prototype “carbodicarbene.” Angew Chem Int Ed 47:3210–3214. https://doi.org/10.1002/anie.200705798

    Article  CAS  Google Scholar 

  72. Schmidbaur H, Wohlleben A, Wagner F, Orama O, Huttner G (1977) Gold-Komplexe von Diphosphinomethanen, I. Synthese und Kristallstruktur zweikerniger Gold(I)-Verbindungen. Chem Ber 110:1748–1754. https://doi.org/10.1002/cber.19771100519

    Article  CAS  Google Scholar 

  73. Schmidbaur H, Wohlleben A, Schubert U, Frank A, Huttner G (1977) Gold-Komplexe von Diphosphinomethanen, II. Synthese und Kristallstruktur achtgliedriger Ringverbindungen von Gold(I) mit Au–Au-Wechselwirkung. Chem Ber 110:2751–2757. https://doi.org/10.1002/cber.19771100810

    Article  CAS  Google Scholar 

  74. Schmidbaur H, Wohlleben A, Wagner FE, Van de Vondel DF, Van der Kelen GP (1977) Gold-Komplexe von Diphosphinomethanen, III. Au -Verbindungen durch oxidative Addition von Halogen. Chem Ber 110:2758–2764. https://doi.org/10.1002/cber.19771100811

  75. Schmidbaur H, Wagner FE, Wohlleben-Hammer A (1979) Gold-Komplexe von Diphosphinomethanen, IV. AuI-Verbindungen von Diphosphinoaminen und oxidative Addition von Chlor zu Au -und Au-Komplexen. Chem Ber 112:496–500. https://doi.org/10.1002/cber.19791120212

  76. Wang W, Ji C-L, Liu K, Zhao C-G, Li W, Xie J (2021) Dinuclear gold catalysis. Chem Soc Rev 50:1874–1912. https://doi.org/10.1039/d0cs00254b

    Article  CAS  Google Scholar 

  77. Pranckevicius C, Liu L, Bertrand G, Stephan DW (2016) Synthesis of a Carbodicyclopropenylidene: a carbodicarbene based solely on carbon. Angew Chem Int Ed 55:5536–5540. https://doi.org/10.1002/anie.201600765

    Article  CAS  Google Scholar 

  78. Liu S, Shih W-C, Chen W-C, Ong T-G (2018) Carbodicarbenes and their captodative behavior in catalysis. Chem Cat Chem 10:1483–1498. https://doi.org/10.1002/cctc.201701577

    Article  CAS  Google Scholar 

  79. Wang T-H, Chen W-C, Ong T-G (2017) Carbodicarbenes or bent allenes. J Chin Chem Soc 64:124–132. https://doi.org/10.1002/jccs.201600241

    Article  CAS  Google Scholar 

  80. Munz D (2018) Pushing electrons - which carbene ligand for which application? Organometallics 37:275–289. https://doi.org/10.1021/acs.organomet.7b00720

    Article  CAS  Google Scholar 

  81. Zargaran P, Mulks FF, Gall S, Rudolph M, Rominger F, Hashmi ASK (2019) Dinuclear NHC gold(I) allenyl and propargyl complexes: an experimental and theoretical study. Organometallics 38:1524–1533. https://doi.org/10.1021/acs.organomet.8b00943

    Article  CAS  Google Scholar 

  82. Soleilhavoup M, Bertrand G (2020) Stable carbenes, nitrenes, phosphinidenes, and borylenes: past and future. Chem 6:1275–1282. https://doi.org/10.1016/j.chempr.2020.04.015

    Article  CAS  Google Scholar 

  83. Mulks FF, Antoni PW, Gross JH, Graf J, Rominger F, Hashmi, ASK (2019) 1,1-Digoldallylium complexes: diaurated allylic carbocations indicate new prospects of the coordination chemistry of carbon. J Am Chem Soc 141:4687–4695. https://doi.org/10.1021/jacs.8b13395

  84. Mulks FF, Hashmi ASK, Faraji S (2020) Sesquicarbene complexes: bonding at the interface between M-C single bonds and M═C double bonds. Organometallics 39:1814–1823. https://doi.org/10.1021/acs.organomet.0c00102

    Article  CAS  Google Scholar 

  85. Bayrakdar TACA, Scattolin T, Ma X, Nolan SP (2020) Dinuclear gold(I) complexes: from bonding to applications. Chem Soc Rev 49:7044–7100. https://doi.org/10.1039/D0CS00438C

    Article  CAS  Google Scholar 

  86. Hirner JJ, Shi Y, Blum SA (2011) Organogold reactivity with palladium, nickel, and rhodium: transmetalation, cross-coupling, and dual catalysis. Acc Chem Res 44:603–613. https://doi.org/10.1021/ar200055y

    Article  CAS  Google Scholar 

  87. Hashmi ASK, Molinari L (2011) Effective transmetalation from gold to iron or ruthenium. Organometallics 30:3457–3460. https://doi.org/10.1021/om200360q

    Article  CAS  Google Scholar 

  88. Shi Y, Blum SA (2011) Gold and rhodium transmetalation: mechanistic insights and dual-metal reactivity. Organometallics 30:1776–1779. https://doi.org/10.1021/om2001316

    Article  CAS  Google Scholar 

  89. Al-Amin M, Roth KE, Blum SA (2014) Mechanistic studies of gold and palladium cooperative dual-catalytic cross-coupling systems. ACS Catal 4:622–629. https://doi.org/10.1021/cs400641k

    Article  CAS  Google Scholar 

  90. Rangaraju SK, Gonela UM, Kavita A, Yadav JS, Mohapatra DK (2018) Synergistic gold and copper dual catalysis for intramolecular Glaser-Hay coupling: rapid total synthesis of ivorenolide B. Eur J Org Chem 2018:4376–4380. https://doi.org/10.1002/ejoc.201800708

    Article  CAS  Google Scholar 

  91. Witzel S, Sekine K, Rudolph M, Hashmi ASK (2018) New transmetalation reagents for the gold-catalyzed visible light-enabled C(sp or sp2)–C(sp2) cross-coupling with aryldiazonium salts in the absence of a photosensitizer. Chem Commun 54:13802–13804. https://doi.org/10.1039/C8CC08227H

    Article  CAS  Google Scholar 

  92. Long Y, Cao B, Xiong X, Chan ASC, Sun RW-Y, Zou T (2021) Bioorthogonal activation of dual catalytic and anti-cancer activities of organogold(I) complexes in living systems. Angew Chem 133:4179–4187. https://doi.org/10.1002/ange.202013366

    Article  Google Scholar 

  93. Follow-up chemistry that could be leveraged by transmetallation reactions is discussed in this and the two references thereafter: De Meijere A, Bräse S, Oestreich M (eds.) (2013) Metal‐catalyzed cross‐coupling reactions and more, 1, 2 and 3. Weinheim: Wiley-VCH. https://doi.org/10.1002/9783527655588

  94. Miyaura N (ed.) (2002) Cross-coupling reactions. Topics in current chemistry, vol 219. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-45313-X

  95. Gentner TX, Mulvey RE (2021) Alkali-metal mediation: diversity of applications in main-group organometallic chemistry. Angew Chem Int Ed 60:9247–9262. https://doi.org/10.1002/anie.202010963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Florian F. Mulks is grateful to the Alexander von Humboldt-Foundation for a Feodor Lynen Research Fellowship. Proof-reading by Dr. Jan Wenz, Hanna Lee, Seok Yeol Yoo, Yerin Park, Dr. Yangyang Yang, and Patrick W. Antoni is acknowledged. Florian F. Mulks is grateful to the Institute for Basic Science (IBS-R10-A1) in Korea for financial support.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Florian F. Mulks.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulks, F.F. Gold carbene complexes and beyond: new avenues in gold(I)-carbon coordination chemistry. Gold Bull 55, 1–13 (2022). https://doi.org/10.1007/s13404-021-00298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-021-00298-1

Keywords

Navigation