Skip to main content
Log in

Agglomerates of Au-Pt bimetallic nanoparticles: synthesis and antibacterial activity

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The extraction of bimetallic Au-Pt nanoparticles is interesting due to their multiple applications in catalytic processes, electronic devices, photothermal therapies, among others. On the other hand, the tendency of nanoparticles forming agglomerates may modify the behavior of the material, and thus their applications. This study shows a highly reproducible novel synthesis method, which only uses two organic agents (sucrose and ascorbic acid) as the reducing and stabilizing agents from nano-agglomerates of Au-Pt at room temperature. The TEM images show agglomerates with a mass fractal structure. We identified crystalline FCC, corresponding to the Au-Pt alloy. Furthermore, the coexistence of gold and platinum nanoparticles was shown through the EDS analysis. The UV-Vis spectrum showed that the resonance plasmon identified coincides with a great approximation to the results reported in the literature. Additionally, the agglomerates exhibited excellent antibacterial activity against bacteria Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240. https://doi.org/10.1038/376238a0

    Article  CAS  Google Scholar 

  2. Rao CRK, Trivedi DC (2005) Chemical and electrochemical depositions of platinum group metals and their applications. Coord Chem Rev 249:5–6, 613-631. https://doi.org/10.1016/j.ccr.2004.08.015

    Article  CAS  Google Scholar 

  3. Schroers J, Lohwongwatana B, Johnson WL, Peker A (2007) Precious bulk metallic glasses for jewelry applications. Mater Sci Eng A 449-451:235–238. https://doi.org/10.1016/j.msea.2006.02.301

    Article  CAS  Google Scholar 

  4. Yamada M, Foote M, Prow TW (2015) Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:428–445. https://doi.org/10.1002/wnan.1322

    Article  CAS  Google Scholar 

  5. Zhou J, Chen M, Diao G (2013) Assembling gold and platinum nanoparticles on resorcinarene modified graphene and their electrochemical applications. J Mater Chem A 1:2278–2285. https://doi.org/10.1039/c2ta01146h

    Article  CAS  Google Scholar 

  6. Carrettin S, Blanco MC, Corma A, Hashmi ASK (2006) Heterogeneous gold-catalysed synthesis of phenols. Adv Synth Catal 348(10–11):1283–1288. https://doi.org/10.1002/adsc.200606099

    Article  CAS  Google Scholar 

  7. Hashmi ASK (2007) Gold-catalyzed organic reactions. Chemical reviews. Am Chem Soc 107:3180–3211. https://doi.org/10.1021/cr000436x

    Article  CAS  Google Scholar 

  8. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chemie Int Ed 45(47):7896–7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  9. Voltz SE, Morgan CR, Liederman D, Jacob SM (1973) Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind Eng Chem Prod Res Dev 12(4):294–301. https://doi.org/10.1021/i360048a006

    Article  CAS  Google Scholar 

  10. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science (80-. ) 280(5363):560–564. https://doi.org/10.1126/science.280.5363.560

    Article  CAS  Google Scholar 

  11. Xiao F, Zhao F, Zhang Y, Guo G, Zeng B (2009) Ultrasonic electrodeposition of gold - platinum alloy nanoparticles on ionic liquid - chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors. J Phys Chem C 113(3):849–855. https://doi.org/10.1021/jp808162g

    Article  CAS  Google Scholar 

  12. Zhang J, Wang Y, Chen B, Li C, Wu D, Wang X (2003) Selective oxidation of CO in hydrogen rich gas over platinum-gold catalyst supported on zinc oxide for potential application in fuel cell. Energy Convers Manag 44(11):1805–1815. https://doi.org/10.1016/S0196-8904(02)00186-3

    Article  CAS  Google Scholar 

  13. Curry JF, Babuska TF, Furnish TA, Lu P, Adams DP, Kustas AB, Nation BL, Dugger MT, Chandross M, Clark BG, Boyce BL, Schuh CA, Argibay N (2018) Achieving ultralow wear with stable nanocrystalline metals. Adv Mater 30. https://doi.org/10.1002/adma.201802026

  14. Liang H, Wu Y, Ou X-Y, Li J-Y, Li J (2017) Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity. Nanotechnology 28(46):465702. https://doi.org/10.1088/1361-6528/aa8d9c

    Article  CAS  Google Scholar 

  15. Fedorczyk A, Pomorski R, Chmielewski M, Ratajczak J, Kaszkur Z, Skompska M (2017) Bimetallic Au@Pt nanoparticles dispersed in conducting polymer—a catalyst of enhanced activity towards formic acid electrooxidation. Electrochim Acta 246:1029–1041. https://doi.org/10.1016/j.electacta.2017.06.138

    Article  CAS  Google Scholar 

  16. Tan C, Sun Y, Zheng J, Wang D, Li Z, Zeng H, Guo J, Jing L, Jiang L (2017) A self-supporting bimetallic Au@Pt core-shell nanoparticle electrocatalyst for the synergistic enhancement of methanol oxidation. Sci Rep 7:6347. https://doi.org/10.1038/s41598-017-06639-5

    Article  CAS  Google Scholar 

  17. Shim K, Lee W-C, Heo Y-U, Shahabuddin M, Park M-S, Hossain MSA, Kim JH (2019) Rationally designed bimetallic au@Pt nanoparticles for glucose oxidation. Sci Rep 9(1):894. https://doi.org/10.1038/s41598-018-36759-5

    Article  CAS  Google Scholar 

  18. Yang Q, Peng J, Xiao Y, Li W, Tan L, Xu X, Qian Z (2018) Porous Au@Pt nanoparticles: therapeutic platform for tumor chemo-photothermal co-therapy and alleviating doxorubicin-induced oxidative damage. ACS Appl Mater Interfaces 10(1):150–164. https://doi.org/10.1021/acsami.7b14705

    Article  CAS  Google Scholar 

  19. Zheng J-N, Li S-S, Ma X, Chen F-Y, Wang A-J, Chen J-R, Feng J-J (2014) Popcorn-like PtAu nanoparticles supported on reduced graphene oxide: facile synthesis and catalytic applications. J Mater Chem A 2(22):8386–8395. https://doi.org/10.1039/C4TA00857J

    Article  CAS  Google Scholar 

  20. He M, Protesescu L, Caputo R, Krumeich F, Kovalenko MV (2015) A general synthesis strategy for monodisperse metallic and metalloid nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and their alloys) via in situ formed metal long-chain amides. Chem Mater 27(2):635–647. https://doi.org/10.1021/cm5045144

    Article  CAS  Google Scholar 

  21. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73(1):137–150. https://doi.org/10.1016/J.YRTPH.2015.06.001

    Article  CAS  Google Scholar 

  22. Li CC, Zhang W, Ang H, Yu H, Xia BY, Wang X, Yang YH, Zhao Y, Hng HH, Yan Q (2014) Compressed hydrogen gas-induced synthesis of Au–Pt Core–Shell nanoparticle chains towards high-performance catalysts for Li–O 2 batteries. J Mater Chem A 2(27):10676–10681. https://doi.org/10.1039/C4TA01475H

    Article  CAS  Google Scholar 

  23. Hurtado RB, Cortez-Valadez M, Arizpe-Chávez H, Flores-Lopez NS, Álvarez RAB, Flores-Acosta M (2017) Nanowire networks and hollow nanospheres of Ag–Au bimetallic alloys at room temperature. Nanotechnology 28(11):115606. https://doi.org/10.1088/1361-6528/aa5c7a

    Article  CAS  Google Scholar 

  24. Chatterjee D, Shetty S, Müller-Caspary K, Grieb T, Krause FF, Schowalter M, Rosenauer A, Ravishankar N (2018) Ultrathin Au-alloy nanowires at the liquid–liquid interface. Nano Lett 18(3):1903–1907. https://doi.org/10.1021/acs.nanolett.7b05217

    Article  CAS  Google Scholar 

  25. Zook JM, Rastogi V, MacCuspie RI, Keene AM, Fagan J (2011) Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano 5(10):8070–8079. https://doi.org/10.1021/nn202645b

    Article  CAS  Google Scholar 

  26. Zook JM, MacCuspie RI, Locascio LE, Halter MD, Elliott JT (2011) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5(4):517–530. https://doi.org/10.3109/17435390.2010.536615

    Article  CAS  Google Scholar 

  27. Roca M, Haes AJ (2008) Probing cells with noble metal nanoparticle aggregates. Nanomedicine 3(4):555–565. https://doi.org/10.2217/17435889.3.4.555

    Article  CAS  Google Scholar 

  28. Britto Hurtado R, Cortez-Valadez M, Ramírez-Rodríguez LP, Larios-Rodriguez E, Alvarez RAB, Rocha-Rocha O, Delgado-Beleño Y, Martinez-Nuñez CE, Arizpe-Chávez H, Hernández-Martínez AR, Flores-Acosta M (2016) Instant synthesis of gold nanoparticles at room temperature and SERS applications. Phys Lett Sect A Gen At Solid State Phys 380:2658–2663. https://doi.org/10.1016/j.physleta.2016.05.052

    Article  CAS  Google Scholar 

  29. Britto Hurtado R, Cortez-Valadez M, Aragon-Guajardo JR, Cruz-Rivera JJ, Martínez-Suárez F, Flores-Acosta M (2017) One-step synthesis of reduced graphene oxide/gold nanoparticles under ambient conditions. Arab J Chem 13:1633–1640. https://doi.org/10.1016/J.ARABJC.2017.12.021

    Article  Google Scholar 

  30. Navarro-Badilla A, Hurtado RB, Cortez-Valadez M, Perez-Rodriguez A, Flores-Acosta M, Maldonado-Arce A (2017) SDS bubbles functionalized with gold nanoparticles and SERS applications. Phys E Low-Dimens Syst Nanostructures 87:93–97. https://doi.org/10.1016/J.PHYSE.2016.11.014

    Article  CAS  Google Scholar 

  31. Horta-Fraijo P, Cortez-Valadez M, Flores-Lopez NS, Britto Hurtado R, Vargas-Ortiz RA, Perez-Rodriguez A, Flores-Acosta M (2018) Ultra-small Ag clusters in zeolite A4: antibacterial and thermochromic applications. Phys E Low-Dimens Syst Nanostruct 97:111–119. https://doi.org/10.1016/j.physe.2017.10.003

    Article  CAS  Google Scholar 

  32. Horta-Piñeres S, Britto Hurtado R, Avila-Padilla D, Cortez-Valadez M, Flores-López NS, Flores-Acosta M (2020) Silver nanoparticle-decorated silver nanowires: a nanocomposite via green synthesis. Appl Phys A Mater Sci Process 126(1):1–9. https://doi.org/10.1007/s00339-019-3178-4

    Article  CAS  Google Scholar 

  33. Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44(17):6287–6305. https://doi.org/10.1039/C4CS00487F

    Article  CAS  Google Scholar 

  34. Liao JYH, Selomulya C, Bushell G, Bickert G, Amal R (2005) On different approaches to estimate the mass fractal dimension of coal aggregates. Part Part Syst Charact 22(5):299–309. https://doi.org/10.1002/ppsc.200500978

    Article  Google Scholar 

  35. Cao X, Wang N, Jia S, Guo L, Li K (2013) Bimetallic AuPt nanochains: synthesis and their application in electrochemical immunosensor for the detection of carcinoembryonic antigen. Biosens Bioelectron 39:226–230. https://doi.org/10.1016/j.bios.2012.07.046

    Article  CAS  Google Scholar 

  36. Han Y, Ouyang Y, Xie Z, Chen J, Chang F, Yu G (2016) Controlled growth of Pt–Au alloy nanowires and their performance for formic acid electrooxidation. J Mater Sci Technol 32:639–645. https://doi.org/10.1016/j.jmst.2016.04.014

    Article  CAS  Google Scholar 

  37. Yu G, Wu W, Pan X, Zhao Q, Wei X, Lu Q (2015) High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets. Sensors (Switzerland) 15:2709–2722. https://doi.org/10.3390/s150202709

    Article  CAS  Google Scholar 

  38. He W, Han X, Jia H, Cai J, Zhou Y, Zheng Z (2017) AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci Rep 7(1):40103. https://doi.org/10.1038/srep40103

    Article  CAS  Google Scholar 

  39. Loganathan B, Chandraboss VL, Senthilvelan S, Karthikeyan B (2015) Surface enhanced vibrational spectroscopy and first-principles study of l -cysteine adsorption on noble trimetallic Au/Pt@Rh clusters. Phys Chem Chem Phys 17(33):21268–21277. https://doi.org/10.1039/C4CP05170J

    Article  CAS  Google Scholar 

  40. Jang SG, Khan A, Dimitriou MD, Kim BJ, Lynd NA, Kramer EJ, Hawker CJ (2011) Synthesis of thermally stable Au-core/Pt-Shell nanoparticles and their segregation behavior in diblock copolymer mixtures. Soft Matter 7:6255. https://doi.org/10.1039/c1sm05223c

    Article  CAS  Google Scholar 

  41. Wu M-L, Chen D-H, Huang T-C (2001) Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemulsions. Chem Mater 13(2):599–606. https://doi.org/10.1021/cm0006502

    Article  CAS  Google Scholar 

  42. Yonezawa T, Toshima N (1993) Polymer- and micelle-protected gold/platinum bimetallic systems. Preparation, application to catalysis for visible-light-induced hydrogen evolution, and analysis of formation process with optical methods. J Mol Catal 83(1–2):167–181. https://doi.org/10.1016/0304-5102(93)87017-3

    Article  CAS  Google Scholar 

  43. Eggersdorfer ML, Pratsinis SE (2014) Agglomerates and aggregates of nanoparticles made in the gas phase. Adv Powder Technol 25(1):71–90. https://doi.org/10.1016/J.APT.2013.10.010

    Article  CAS  Google Scholar 

  44. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem - Intl Ed 49:1362–1395. https://doi.org/10.1002/anie.200903053

    Article  CAS  Google Scholar 

  45. Mulvaney P, Liz-Marzán LM, Giersig M, Ung T (2000) Silica encapsulation of quantum dots and metal clusters. J Mater Chem 10(6):1259–1270. https://doi.org/10.1039/b000136h

    Article  CAS  Google Scholar 

  46. Filippo E, Serra A, Buccolieri A, Manno D (2010) Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. J Non-Cryst Solids 356(6–8):344–350. https://doi.org/10.1016/j.jnoncrysol.2009.11.021

    Article  CAS  Google Scholar 

  47. Sun L, Yin Y, Wang F, Su W, Zhang L (2018) Facile one-pot green synthesis of Au-Ag alloy nanoparticles using sucrose and their composition-dependent photocatalytic activity for the reduction of 4-nitrophenol. Dalt Trans 47(12):4315–4324. https://doi.org/10.1039/c7dt03850j

    Article  CAS  Google Scholar 

  48. Amornkitbamrung L, Pienpinijtham P, Thammacharoen C, Ekgasit S (2014) Palladium nanoparticles synthesized by reducing species generated during a successive acidic/alkaline treatment of sucrose. spectrochim. Acta - Part A Mol Biomol Spectrosc 122:186–192. https://doi.org/10.1016/j.saa.2013.10.095

    Article  CAS  Google Scholar 

  49. Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia Coli and Bacillus Calmette-Guérin. J Nanobiotechnology 10(1):19. https://doi.org/10.1186/1477-3155-10-19

    Article  CAS  Google Scholar 

  50. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20(32):6789. https://doi.org/10.1039/c0jm00817f

    Article  CAS  Google Scholar 

  51. Ma S, Izutani N, Imazato S, Chen J, Kiba W, Yoshikawa R, Takeda K, Kitagawa H, Ebisu S (2012) Assessment of bactericidal effects of quaternary ammonium-based antibacterial monomers in combination with colloidal platinum nanoparticles. Dent Mater J 31(1):150–156. https://doi.org/10.4012/dmj.2011-180

    Article  CAS  Google Scholar 

  52. Siegel J, Staszek M, Švorčík V, Rimpelová S, Kolářová K (2014) Formation and antibacterial action of Pt and Pd nanoparticles sputtered into liquid. Micro &amp. Nano Lett 9(11):778–781. https://doi.org/10.1049/mnl.2014.0345

    Article  Google Scholar 

  53. Zhao Y, Ye C, Liu W, Chen R, Jiang X (2014) Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem - Int Ed 53:8127–8131. https://doi.org/10.1002/anie.201401035

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to supporting given by Laboratory of Transmission Electron Microscopy in the Universidad de Sonora. The author M. Cortez-Valadez appreciates the support of Cátedras CONACYT. This work was supported by project A1-S-46242 of the CONACYT Basic Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Britto Hurtado or M. Cortez-Valadez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britto Hurtado, R., Cortez-Valadez, M., Flores-Lopez, N.S. et al. Agglomerates of Au-Pt bimetallic nanoparticles: synthesis and antibacterial activity. Gold Bull 53, 93–100 (2020). https://doi.org/10.1007/s13404-020-00277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-020-00277-y

Keywords

Navigation