Gold Bulletin

, Volume 50, Issue 4, pp 313–317 | Cite as

Core size matters! High Raman enhancing core tunable Au/Ag bimetallic core-shell nanoparticles

  • Diptiranjan Paital
  • Tapasi Sen
  • Amitava Patra
  • Krishna Kanta Haldar
Original Paper

Abstract

Bimetallic core-shell nanostructures have been attracted tremendous attention due to their ability to form novel materials with unique chemical, optical, and physical properties. Here, we have studied the influence of core size of Au/Ag bimetallic core-shell nanostructures on the Raman enhancement efficiency with the Raman-active probe methylene blue. The surface-enhanced Raman scattering intensity is increased with increase in the core size of Au/Ag bimetallic core-shell nanoparticles. Interestingly, the enhancement factor is found to be 6.58 × 107 for the Au100/Ag core-shell nanoparticles and allows easy detection of analyte methylene blue. Thus, surface-enhanced Raman scattering properties of the metal nanoparticles are significantly enhanced due to the Au/Ag core-shell structures and the enhancement factor is dependent on the size of the core of the bimetallic nanoparticles.

Keywords

Au/Ag Bimetallic Core-shell Raman SERS Enhancement 

Notes

Acknowledgements

This work is financially supported by Central University of Punjab, Bathinda, India by its research seeds grant.

References

  1. 1.
    Placido T, Comparelli R, Giannici F, Cozzoli PD, Capitani G, Striccoli M, Agostiano A, Curri ML (2009) Photochemical synthesis of water-soluble gold nanorods: the role of silver in assisting anisotropic growth. Chem Mater 21:4192–4202CrossRefGoogle Scholar
  2. 2.
    Cozzoli PD, Fanizza E, Curri ML, Laub D, Agostiano A (2005) Low-dimensional chainlike assemblies of TiO2 nanorod-stabilized Au nanoparticles. Chem Commun:942–944Google Scholar
  3. 3.
    Cozzoli P D, Curri ML, Giannini C, Agostiano A (2006) Synthesis of TiO2–Au composites by titania-nanorod-assisted generation of gold nanoparticles at aqueous/nonpolar interfaces. Small 2:413–421Google Scholar
  4. 4.
    Huang J, Vongehr S, Tang S, Lu H, Shen J, Meng X (2009) Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 25:11,890–11,896CrossRefGoogle Scholar
  5. 5.
    Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104:6028–6032CrossRefGoogle Scholar
  6. 6.
    Haldar KK, Kundu S, Patra A (2014) Core-size-dependent catalytic properties of bimetallic Au/Ag core–shell nanoparticles. ACS Appl Mater Interfaces 6(21):946–21,953Google Scholar
  7. 7.
    Zhang Q, Xie J, Lee JY, Zhang J, Boothroyd C (2008) Synthesis of Ag@ AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. Small 4:1067–1071CrossRefGoogle Scholar
  8. 8.
    Selvakannan PR, Sastry M (2005) Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem Comm 13:1684–1686CrossRefGoogle Scholar
  9. 9.
    Yang J, Lee JY, Too HP, Valiyaveettil S (2005) A bis(p-sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres. J Phys Chem B 110:125–129CrossRefGoogle Scholar
  10. 10.
    Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, Xie Z, Xia Y (2010) Au@ Ag core−shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS nano 4:6725–6734CrossRefGoogle Scholar
  11. 11.
    Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRefGoogle Scholar
  12. 12.
    Kreibig U, Vollmer M(1995) Optical properties of metal clusters, Springer Series in Materials Science. Springer-Verlag: New York 25.Google Scholar
  13. 13.
    Liz-Marzan LM (2006) Tailoring surface plasmon resonance through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  14. 14.
    Cardinal MF, Rodríguez-Gonzalez B, Alvarez-Puebla RA, Perez-Juste J, Liz-Marzán LM (2010) Modulation of localized surface plasmons and SERS response in gold dumbbells through silver coating. J Phys Chem C 114:10,417–10,423CrossRefGoogle Scholar
  15. 15.
    Jiang R, Chen H, Shao L, Li Q, Wang J (2012) Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag shell) nanorods. Adv Mater 24:200–207Google Scholar
  16. 16.
    Xie F, Baker MS, Goldys EM (2006) Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. J Phys Chem B 110:23,085–23,091CrossRefGoogle Scholar
  17. 17.
    Jana NR (2003) Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst 128:954–956CrossRefGoogle Scholar
  18. 18.
    Patra PP, Kumar (2013) G V P Single-molecule surface-enhanced Raman scattering sensitivity of Ag-core Au-shell nanoparticles: revealed by bi-analyte method. J Phys Chem Lett 4:1167–1171CrossRefGoogle Scholar
  19. 19.
    Song L, Mao K, Zhou X, Hu J (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta 146:285–290CrossRefGoogle Scholar
  20. 20.
    Khlebtsov BN, Liu Z, Ye J, Khlebtsov NG (2015) Au@ Ag core/shell cuboids and dumbbells: optical properties and SERS response. J Quant Spectrosc Radiat Transfer 167:64–75CrossRefGoogle Scholar
  21. 21.
    Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I (2013) Size Tunable Au@ Ag core–shell nanoparticles: synthesis and surface-enhanced raman scattering properties. Langmuir 29:15,076–15,082CrossRefGoogle Scholar
  22. 22.
    Pande S, Ghosh SK, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T (2007) Synthesis of normal and inverted gold-silver core-shell architectures in β-Cyclodextrin and their applications in SERS. J Phys Chem C 11:10,806–10,813CrossRefGoogle Scholar
  23. 23.
    Pande S, Chowdhury J, Pal T (2011) Understanding the enhancement mechanisms in the surface-enhanced Raman spectra of the 1, 10-phenanthroline molecule adsorbed on a Au@ Ag bimetallic nanocolloid. J Phys Chem C 115:10497–10509CrossRefGoogle Scholar
  24. 24.
    Bastus NG, Comenge J, Puntes VC (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11,098–11,105CrossRefGoogle Scholar
  25. 25.
    Jana D, Mandal A, De G (2012) High Raman enhancing shape-tunable Ag nanoplates in alumina: a reliable and efficient SERS technique. ACS Appl Mater Interfaces 4:3330–3334CrossRefGoogle Scholar
  26. 26.
    Naujok RR, Duevel RV, Corn RM (1993) Fluorescence and Fourier transform surface-enhanced Raman scattering measurements of methylene blue adsorbed onto a sulfur-modified gold electrode. Langmuir 9:1771–1774CrossRefGoogle Scholar
  27. 27.
    Jia H, Bai X, Li N, Yu L, Zheng L (2011) Siloxane surfactant induced self-assembly of gold nanoparticles and their application to SERS. Cryst Eng Comm 13:6179–6184CrossRefGoogle Scholar
  28. 28.
    Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13,794–13,803CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Diptiranjan Paital
    • 1
  • Tapasi Sen
    • 2
  • Amitava Patra
    • 3
  • Krishna Kanta Haldar
    • 1
    • 3
  1. 1.Centre for Chemical science, School of Basic and Applied ScienceCentral University of Punjab, City CampusBathindaIndia
  2. 2.Institute of Nano Science and TechnologyMohaliIndia
  3. 3.Department of Materials ScienceIndian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations