Gold Bulletin

, Volume 50, Issue 4, pp 289–297 | Cite as

Rapid synthesis of gold nanoparticles using silk fibroin: characterization, antibacterial activity, and anticancer properties

  • B. Lakshmeesha Rao
  • Mahadev Gowda
  • S. Asha
  • K. Byrappa
  • B. Narayana
  • R. Somashekar
  • Y. Wang
  • L. N. Madhu
  • Y. Sangappa
Original Paper


In the present work, well-dispersed gold nanoparticles (AuNPs) were synthesised by the reduction of HAuCl4.xH2O using silk fibroin as a reducing agent. UV-visible spectroscopy confirmed the formation of AuNPs by showing surface plasmon resonance (SPR) at 526–518 nm. The FT-IR study revealed that the hydroxyl groups in the Tyr residue and the carboxyl groups in the Asp and/or Glu residues were the most active functional groups for the conversion of Au ion reduction. The transmission electron microscope (TEM) images showed that the formed nanoparticles were uniformly embedded in the silk fibroin solution. The AuNPs are spherical in shape with smooth edges and around 5–8 nm in diameter. Also, these possess very good stability and dispersity and can be stored for a long period. Further, the X-ray diffraction (XRD) study confirmed the nanocrystalline phase of the gold with cubic crystal structure. The biogenic gold nanoparticles displayed antibacterial activity against Gram-positive and Gram-negative bacteria, and also showed promising anticancer properties.


Silk fibroin Gold nanoparticles XRD TEM Antibacterial activity Anticancer activity 



One of the authors (SY) is thankful to SERB-DST, Goverment of India, for financial assistance.


  1. 1.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  2. 2.
    Pernpointner M, Hashmi ASK (2009) Fully relativistic comparative investigation of gold and platinum alkyne complexes of relevance for the catalysis of nucleophilic additions to alkynes. J Chem Theory Computation 5:2717–2725CrossRefGoogle Scholar
  3. 3.
    Hashmi AKS, Kurpejovic E, Frey W, Bats JW (2007) Gold catalysis contra platinum catalysis in hydroarylation contra phenol synthesis. Tetrahedron 63:5879–5885CrossRefGoogle Scholar
  4. 4.
    Xia Y, Wan J, Gu Q (2011) Silk fibroin fibers supported with high density of gold nanoparticles: fabrication and application as catalyst. Gold Bull 44:171–176CrossRefGoogle Scholar
  5. 5.
    Wang P, Lin Z, Su X, Tang Z (2017) Application of Au based nanomaterials in analytical science. Nano Today 12:64–97CrossRefGoogle Scholar
  6. 6.
    Acuna G, Grohmann D, Tinnefeld P (2014) Enhancing single-molecule fluorescence with nanophotonics. FEBS Lett 588:3547–3552CrossRefGoogle Scholar
  7. 7.
    Cui Y, Irudayaraj J (2015) Inside single cells: quantitative analysis with advanced optics and nanomaterials. Wiley Interdisciplinary Reviews—Nanomedicine and Nanobiotechnology 7:387–407CrossRefGoogle Scholar
  8. 8.
    Yang H, Yuan B, Zhang X (2014) Supramolecular chemistry at interfaces: host−guest interactions for fabricating multifunctional biointerfaces. Acc Chem Res 47:2106–2115CrossRefGoogle Scholar
  9. 9.
    Noruzi M (2015) Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng 38:1–14CrossRefGoogle Scholar
  10. 10.
    Thakkar KN, Mhatre SS, Parikh RY (2011) Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology. Biol Med 6:257–262Google Scholar
  11. 11.
    Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488CrossRefGoogle Scholar
  12. 12.
    Adavallan K, Krishnakumar N (2014) Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens. Adv Nat Sci Nanosci Nantechnol 5:025018CrossRefGoogle Scholar
  13. 13.
    Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369:27–33CrossRefGoogle Scholar
  14. 14.
    Philip D, Unni C (2011) Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys E 43:1318–1322CrossRefGoogle Scholar
  15. 15.
    Ganesh KV, Dinesh GS, Rajeswari A, Stalin DT, Karthick V, Kapadia Z, Shrestha T, Barathy IA, Roy A, Sinha S (2011) Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf B 87(1):159–163CrossRefGoogle Scholar
  16. 16.
    Noruzi M, Zare D, Khoshnevisan K, Davoodi D (2011) Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim Acta A 79(5):1461–1465CrossRefGoogle Scholar
  17. 17.
    Vijayakumar R, Devi V, Adavallan K, Saranya D (2011) Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus. Phys E 44(3):665–671CrossRefGoogle Scholar
  18. 18.
    Ghoreishi SM, Behpour M, Khayatkashani M (2011) Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Phys E 44(1):97–104CrossRefGoogle Scholar
  19. 19.
    Noruzi M, Zare D, Davoodi D (2012) A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim Acta A 94:84–88CrossRefGoogle Scholar
  20. 20.
    Mohan KK, Kumar MB, Sinha M, Krishnakumar V (2012) Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim Acta A 86:490–494CrossRefGoogle Scholar
  21. 21.
    Govindaraju K, Kiruthiga V, Manikandan R, Ashokkumar T, Singaravelu G (2011) β-glucosidase assisted biosynthesis of gold nanoparticles: a green chemistry approach. Mater Lett 65:256–259CrossRefGoogle Scholar
  22. 22.
    Sun K, Qui J, Liu J, Miao Y (2009) Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micells. J Mater Sci 44:754–758CrossRefGoogle Scholar
  23. 23.
    Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381CrossRefGoogle Scholar
  24. 24.
    Cheng Y, Koh L-D, Li D, Ji B, Han M-Y, Zhang Y-W (2014) On the strength of β-sheet crystallites of Bombyx mori silk fibroin. J R Soc Interface 11(96):20140305CrossRefGoogle Scholar
  25. 25.
    Hu X, Shmelev K, Sun L, Gil ES, Park SH, Cebe P, Kaplan D (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686–1696CrossRefGoogle Scholar
  26. 26.
    Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531CrossRefGoogle Scholar
  27. 27.
    Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061CrossRefGoogle Scholar
  28. 28.
    Asha S, Sangappa PN, Sharath CK, Ganesh S (2014) Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films. AIP Conf Proc 1591:219–221CrossRefGoogle Scholar
  29. 29.
    Patil S, George T, Mahadik K (2015) Green synthesized nanosilver loaded silk fibroin gel for enhanced wound healing. Journal of Drug Delivery Science and Technology 30(A):30–36CrossRefGoogle Scholar
  30. 30.
    Fei X, Jia M, Du X, Yang Y, Zhang R, Shao Z, Zhao X, Chen X (2013) Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules 14(12):4483–4488CrossRefGoogle Scholar
  31. 31.
    Tettey CO, Ocloo A, Nagajyothi PCN, Lee KD (2014) An in vitro analysis of antiproliferative and antimicrobial activities of solvent fractions of Taraxacum officinale (Dandelion) leaf. Journal of Applied Pharmaceutical Science 4(3):41–45Google Scholar
  32. 32.
    Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Prot 3(2):163–175CrossRefGoogle Scholar
  33. 33.
    Mollick MMR, Bhowmick B, Mondal D, Maity D, Rana D, Dash SK, Chattopadhyay S, Roy S, Sarkar J, Acharya K, Chakraborty M, Chattopadhyay D (2014) Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Adv 4:37838CrossRefGoogle Scholar
  34. 34.
    Ahmad A, Senapathi S, Khan MI, Kumar R, Ramani R, Srinivas V, Shastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete. Rhodococcus species, Nanotechnology 14:824–828CrossRefGoogle Scholar
  35. 35.
    Mulvany P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800CrossRefGoogle Scholar
  36. 36.
    Gaikwad AV, Verschuren P, Kinge S, Rothenberg G, Eiserz E (2007) Matter of age: growing anisotropic gpld nanocrystals in organic media. Phys Chem Chem Phys 10:951–956CrossRefGoogle Scholar
  37. 37.
    Xhou Y, Chen W, Itoh H, Naka K, Ni Q, Yamane H, Chujo Y (2001) Preparation of a novel core-shell nanostructured gold collide-silk fibroin bioconjugate by the protein in situ redox technique at room temperature. Chem Commun 2001:2518–2519Google Scholar
  38. 38.
    Kryukov AI, Stroyuk AL, Zinchuk NN, Korzhak AV, Kuchmii SY (2004) Optical and catalytic properties of Ag2S nanoparticles. J Mol Catal A Chem 221:209–221CrossRefGoogle Scholar
  39. 39.
    Shivananda CS, Asha S, Madhukumar R, Satish S, Narayana B, Byrappa K, Wang Y, Sangappa Y (2016) Biosynthesis of colloidal silver nanoparticles: their characterization and antibacterial activity. Biomed Phys Eng Express 2:035004CrossRefGoogle Scholar
  40. 40.
    Wenxing C, Wen W, Haixiang C, Zhiquan S (2003) Preparation and characterization of nobel metal nanocolloids by silk fibroin in situ reduction. Science in China (Series B) 46(4):330–338CrossRefGoogle Scholar
  41. 41.
    Srisa-Ard M, Baimark Y, Srisuwan Y (2008) Conformation transition and thermal properties study of silk fibroin and poly (ε-caprolactone) blends. J Appl Sci 8:3518–3522CrossRefGoogle Scholar
  42. 42.
    Kaplan DL, Fossey S, Mello CM (1992) Biosynthesis and processing of silk proteins. Mater Res Soc Bull 17:41–47CrossRefGoogle Scholar
  43. 43.
    Dong Q, Su H, Zhang D (2005) In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J Phys Chem B 109:17429–17434CrossRefGoogle Scholar
  44. 44.
    Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364CrossRefGoogle Scholar
  45. 45.
    Shivananda CS, Rao BL, Madhukumar R, Sarojini BK, Somashekhar R, Asha S, Sangappa Y (2016) Silk fibroin/pullulan blend films: preparation and characterization. AIP Conference Proceedings 1731:070013CrossRefGoogle Scholar
  46. 46.
    Feng XX, Zhang LL, Chen JY, Guo YH, Zhang HP, Jia CI (2007) Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. Int J Biol Macromol 40:105–111CrossRefGoogle Scholar
  47. 47.
    Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  48. 48.
    Noruzi M, Zare D, Khoshnevisan K, Davoodi D (2011) Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochimica Acta A Part A 79:1461–1465CrossRefGoogle Scholar
  49. 49.
    Jeffrey JW (1971) Methods in crystallography. Academic press, New York 571pGoogle Scholar
  50. 50.
    Narayanan KB, Sakthivel K (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590CrossRefGoogle Scholar
  51. 51.
    Zhou L, Terry TE, Huang Y, Shao Z, Chen X (2005) Metal element contents in silk gland and silk fiber of Bombyx mori silkworm. Acta Chim Sin 63:1379–1382Google Scholar
  52. 52.
    Zhou L, Chen X, Shao Z, Zhou P, Knight DP, Vollrath F (2003) Copper in the silk formation process of Bombyx mori silkworm. FEBS Lett 554:337–341CrossRefGoogle Scholar
  53. 53.
    Mandal S, Selvakannan PR, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. Proc Indian Acad Sci (Cehm Sci) 114:513–520CrossRefGoogle Scholar
  54. 54.
    Selvakannan PR, Mandal S, Phadtare S, Pasricha R, Sastry M (2003) Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19:3545–3549CrossRefGoogle Scholar
  55. 55.
    Selvakannan PR, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya SD, Sastry M (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269:97–102CrossRefGoogle Scholar
  56. 56.
    Joshi H, Shirude PS, Bansal V, Ganesh KN, Sastry M (2004) Isothermal titration calorimetry studies on the binding of amino acids to gold nanoparticles. J Phy Cem B 108:11535–11540CrossRefGoogle Scholar
  57. 57.
    Bhau BS, Ghosh S, Puri S, Borah B, Sarmah DK, Khan R (2015) Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Adv Mater Lett 6(1):55–58CrossRefGoogle Scholar
  58. 58.
    Bindhu MR, Umadevi M (2014) Antibacterial activities of green synthesized gold nanoparticles. Mater Lett 120:122–125CrossRefGoogle Scholar
  59. 59.
    Sadeghi B (2015) Zizyphus mauritiana extract-mediated green and rapid synthesis of gold nanoparticles and its antibacterial activity. J Nanostruct Chem 5:265–273CrossRefGoogle Scholar
  60. 60.
    Patra JK, Baek K-H (2015) Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int J Nanomedicine 10:7253–7264Google Scholar
  61. 61.
    Hudson L, Hay FC (1989) Practical immunology, 3rd edn. Blackwell pub, OxfordGoogle Scholar
  62. 62.
    Jeyaraj M, Rajesh M, Arun R, Ali DM, Sathishkumar G, Sivanandhan G, Dev GK, Manickavasagam M, Premkumar K, Thajuddin N, Ganapathi A (2013) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B 102:708–717CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • B. Lakshmeesha Rao
    • 1
  • Mahadev Gowda
    • 1
  • S. Asha
    • 1
  • K. Byrappa
    • 2
  • B. Narayana
    • 3
  • R. Somashekar
    • 4
  • Y. Wang
    • 5
  • L. N. Madhu
    • 6
  • Y. Sangappa
    • 1
  1. 1.Department of Studies in PhysicsMangalore UniversityMangaloreIndia
  2. 2.Department of Material ScienceMangalore UniversityMangaloreIndia
  3. 3.Department of ChemistryMangalore UniversityMangaloreIndia
  4. 4.Department of Studies in PhysicsUniversity of MysoreMysoreIndia
  5. 5.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  6. 6.Department of BiochemistrySt. Aloysius CollegeMangaloreIndia

Personalised recommendations