Gold Bulletin

, Volume 50, Issue 4, pp 299–311 | Cite as

Evaluation of the radiotherapy and proton therapy improvements using gold nanoparticles

Original Paper
  • 78 Downloads

Abstract

An evaluation of the improvement in radiotherapy obtained using gold nanoparticles embedded in the tumor tissues is presented for traditional treatments using X-rays and electrons and for innovative proton therapy. The possible nanoparticles’ preparation via physical, by laser ablation in liquids, and chemical techniques is presented. The use of functionalized gold nanoparticles is discussed and results from the study of uptake and decay from mice living systems are reported.

The improvement obtainable in medical images and in the dose distribution enhancement in disease tissues with respect to healthy ones is investigated.

Keywords

Gold nanoparticles Medical image Radiotherapy Protontherapy Bragg peak 

Notes

Acknowledgements

Author thanks the useful collaboration with Prof. S. Cuzzocrea of the Dip.to di Scienze Chimiche – CBFA of Università di Messina. This research was supported by University of Messina Research & Mobility 2016 Project (project code RES_AND_MOB_2016_TORRISI).

References

  1. 1.
    Torrisi L (2015) Radiotherapy improvements by using au nanoparticles. Recent Patents Nanotechnol 9(2):114–125CrossRefGoogle Scholar
  2. 2.
    Kim C, Agasti SS, Zhu Z, Isaacs L, Rotello VM (2010) Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat Chem 2:962–966CrossRefGoogle Scholar
  3. 3.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  4. 4.
    Feldman LC, Mayer JW (1986) Fundamentals of surface and thin film analysis. North-Holland, ElsevierGoogle Scholar
  5. 5.
    McQuaid HN, Muir MF, Taggart LE, McMahon SJ, Coulter JA, Hyland WB, Jain S, Butterworth KT, Schettino G, Prise KM, Hirst DG, Botchway SW, Currell FJ (2016) Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep 6:19442CrossRefGoogle Scholar
  6. 6.
    Chithrani DB, Jelveh S, Jalali F, Van Prooijen M, Allen C, Bristow RG, Hillc RP, Jaffraya DA (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728CrossRefGoogle Scholar
  7. 7.
    Lechtman E, Chattopadhyay N, Cai Z, Mashouf S, Reilly R, J.P. Pignol JP (2011). Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56: 4631–4647Google Scholar
  8. 8.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefGoogle Scholar
  9. 9.
    Zhang XD, Wu HY, Wu D, Wang YY, Chang JH, Zhai ZB, Meng AM, Liu PX, Zhang LA, Fan FY (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 5:771–781CrossRefGoogle Scholar
  10. 10.
    Nishioka A, Ohizumi Y, Lam GK, Pickles TA, Chaplin DJ, Ogawa Y, Inomata T, Yoshida S (1999) The effects of nicotinamide plus carbogen or pions for microscopic SCCVII tumors. Oncol Rep 6:583–586Google Scholar
  11. 11.
    Murayama C, Suzuki A, Sato C, Tanabe Y, Shoji T, Miyata Y, Nishio A, Suzuki T, Sakaguchi M, Mori T (1993) Radiosensitization by a new potent nucleoside analog: 1-(1′,3′,4′-trihydroxy-2′-butoxy)methyl-2-nitroimidazole (RP-343). Int J Radiat Oncol Biol Phys 26:433–443CrossRefGoogle Scholar
  12. 12.
    Bourhis J, Rosine D (2002) Radioprotective effect of amifostine in patients with head and neck squamous cell carcinoma. Semin Oncol 29:61–62CrossRefGoogle Scholar
  13. 13.
    Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506CrossRefGoogle Scholar
  14. 14.
    Unezaki S, Maruyama K, Hosoda J-I, Nagae I, Koyanagi Y, Nakata M (1996) Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int J Pharm 144:11–17CrossRefGoogle Scholar
  15. 15.
    Anshup A, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TRS, Onkumar RV, John A, Pradeep T (2005) Growth of gold nanoparticles in human cells. Langmuir 21:11562–11567CrossRefGoogle Scholar
  16. 16.
    Torrisi L (2015) Gold nanoparticles enhancing protontherapy efficiency. Recent Patents on Nanotechnology 9(1):51–60CrossRefGoogle Scholar
  17. 17.
    Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D: Appl. Phys:44, 283001Google Scholar
  18. 18.
    Torrisi L, Cutroneo M, Ceccio G (2015) Effect of metallic nanoparticles in thin foils for laser ion acceleration. Phys Scripta 9:015603CrossRefGoogle Scholar
  19. 19.
    Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis. Spectra Anal Chem 79:4215–4221CrossRefGoogle Scholar
  20. 20.
    Rossi M, Della Pina C, Falletta E (2016) Gold nanomaterials: from preparation to pharmaceutical design and application. Curr Pharm Des 22:1485–1493CrossRefGoogle Scholar
  21. 21.
    Chanda N, Kattumuri V, Shukla R, Zambre A, Katti K, Upendran A, Kulkarni RR, Kan P, Fent GM, Casteel SW, Smith CJ, Boote E, Robertson JD, Cutler C, Lever JR, Katti KV, Kannan R (2010) Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. PNAS 107(19):11CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859–2864Google Scholar
  24. 24.
  25. 25.
    Cirrone GAP, Cuttone G, Lojacono PA, Lo Nigro S, Mongelli V, Patti IV, Privitera G, Raffaele L, Rifuggiato D, Sabini MG, Salamone V, Spatola C, Valastro LM (2004) A 62-MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN. IEEE Trans On Nucl Sci 51(3):860–865CrossRefGoogle Scholar
  26. 26.
    Ziegler J (2017) SRIM: the stopping and range of ions in matter. Actual website 2017: http://www.srim.org/
  27. 27.
    Essaidi A, Chakif MB, Schöps B, Aumman A, Xiao S, Esen C, Ostendorf A (2013) Size control of gold nanoparticles during laser ablation in liquids with different functional molecules. Journal of Laser Micro/Nanoengineering 8(2):131CrossRefGoogle Scholar
  28. 28.
    Baruah PK, Sharma AK, Khare A (2017) Dependence of the size of copper nanoparticles on laser energy synthesized by pulsed laser ablation in liquid. VBRI Press, Advanced Materials Proceedings 2(4):264–268Google Scholar
  29. 29.
  30. 30.
    NIST, Mass attenuation coefficients, actual website (2017): https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients Google Scholar
  31. 31.
  32. 32.
    Zheng Y, Hunting DJ, Ayotte P, Sanche L (2008) Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res 169(1):19–27CrossRefGoogle Scholar
  33. 33.
    Dvorak FH, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109Google Scholar
  34. 34.
    Zheng Y, Sanche L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat Res 172:114–119CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Physics Sciences – MIFTMessina UniversityMessinaItaly

Personalised recommendations