Skip to main content
Log in

Evaluation of the radiotherapy and proton therapy improvements using gold nanoparticles

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

An evaluation of the improvement in radiotherapy obtained using gold nanoparticles embedded in the tumor tissues is presented for traditional treatments using X-rays and electrons and for innovative proton therapy. The possible nanoparticles’ preparation via physical, by laser ablation in liquids, and chemical techniques is presented. The use of functionalized gold nanoparticles is discussed and results from the study of uptake and decay from mice living systems are reported.

The improvement obtainable in medical images and in the dose distribution enhancement in disease tissues with respect to healthy ones is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Torrisi L (2015) Radiotherapy improvements by using au nanoparticles. Recent Patents Nanotechnol 9(2):114–125

    Article  Google Scholar 

  2. Kim C, Agasti SS, Zhu Z, Isaacs L, Rotello VM (2010) Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat Chem 2:962–966

    Article  Google Scholar 

  3. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  4. Feldman LC, Mayer JW (1986) Fundamentals of surface and thin film analysis. North-Holland, Elsevier

    Google Scholar 

  5. McQuaid HN, Muir MF, Taggart LE, McMahon SJ, Coulter JA, Hyland WB, Jain S, Butterworth KT, Schettino G, Prise KM, Hirst DG, Botchway SW, Currell FJ (2016) Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep 6:19442

    Article  Google Scholar 

  6. Chithrani DB, Jelveh S, Jalali F, Van Prooijen M, Allen C, Bristow RG, Hillc RP, Jaffraya DA (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728

    Article  Google Scholar 

  7. Lechtman E, Chattopadhyay N, Cai Z, Mashouf S, Reilly R, J.P. Pignol JP (2011). Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56: 4631–4647

  8. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  Google Scholar 

  9. Zhang XD, Wu HY, Wu D, Wang YY, Chang JH, Zhai ZB, Meng AM, Liu PX, Zhang LA, Fan FY (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 5:771–781

    Article  Google Scholar 

  10. Nishioka A, Ohizumi Y, Lam GK, Pickles TA, Chaplin DJ, Ogawa Y, Inomata T, Yoshida S (1999) The effects of nicotinamide plus carbogen or pions for microscopic SCCVII tumors. Oncol Rep 6:583–586

    Google Scholar 

  11. Murayama C, Suzuki A, Sato C, Tanabe Y, Shoji T, Miyata Y, Nishio A, Suzuki T, Sakaguchi M, Mori T (1993) Radiosensitization by a new potent nucleoside analog: 1-(1′,3′,4′-trihydroxy-2′-butoxy)methyl-2-nitroimidazole (RP-343). Int J Radiat Oncol Biol Phys 26:433–443

    Article  Google Scholar 

  12. Bourhis J, Rosine D (2002) Radioprotective effect of amifostine in patients with head and neck squamous cell carcinoma. Semin Oncol 29:61–62

    Article  Google Scholar 

  13. Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506

    Article  Google Scholar 

  14. Unezaki S, Maruyama K, Hosoda J-I, Nagae I, Koyanagi Y, Nakata M (1996) Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int J Pharm 144:11–17

    Article  Google Scholar 

  15. Anshup A, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TRS, Onkumar RV, John A, Pradeep T (2005) Growth of gold nanoparticles in human cells. Langmuir 21:11562–11567

    Article  Google Scholar 

  16. Torrisi L (2015) Gold nanoparticles enhancing protontherapy efficiency. Recent Patents on Nanotechnology 9(1):51–60

    Article  Google Scholar 

  17. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D: Appl. Phys:44, 283001

  18. Torrisi L, Cutroneo M, Ceccio G (2015) Effect of metallic nanoparticles in thin foils for laser ion acceleration. Phys Scripta 9:015603

    Article  Google Scholar 

  19. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis. Spectra Anal Chem 79:4215–4221

    Article  Google Scholar 

  20. Rossi M, Della Pina C, Falletta E (2016) Gold nanomaterials: from preparation to pharmaceutical design and application. Curr Pharm Des 22:1485–1493

    Article  Google Scholar 

  21. Chanda N, Kattumuri V, Shukla R, Zambre A, Katti K, Upendran A, Kulkarni RR, Kan P, Fent GM, Casteel SW, Smith CJ, Boote E, Robertson JD, Cutler C, Lever JR, Katti KV, Kannan R (2010) Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. PNAS 107(19):11

    Article  Google Scholar 

  22. Nanoprobe, actual website (2017): http://www.nanoprobes.com/products/AuroVist-Gold-X-ray-Contrast-Agent.html#buy

  23. Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859–2864

    Google Scholar 

  24. Bruker, actual website (2017): https://www.bruker.com/ru/applications/preclinical-imaging/multimodal-in-vivo-fluorescent.html

  25. Cirrone GAP, Cuttone G, Lojacono PA, Lo Nigro S, Mongelli V, Patti IV, Privitera G, Raffaele L, Rifuggiato D, Sabini MG, Salamone V, Spatola C, Valastro LM (2004) A 62-MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN. IEEE Trans On Nucl Sci 51(3):860–865

    Article  Google Scholar 

  26. Ziegler J (2017) SRIM: the stopping and range of ions in matter. Actual website 2017: http://www.srim.org/

  27. Essaidi A, Chakif MB, Schöps B, Aumman A, Xiao S, Esen C, Ostendorf A (2013) Size control of gold nanoparticles during laser ablation in liquids with different functional molecules. Journal of Laser Micro/Nanoengineering 8(2):131

    Article  Google Scholar 

  28. Baruah PK, Sharma AK, Khare A (2017) Dependence of the size of copper nanoparticles on laser energy synthesized by pulsed laser ablation in liquid. VBRI Press, Advanced Materials Proceedings 2(4):264–268

    Google Scholar 

  29. NIST PSTAR database, actual website (2017): http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html

    Google Scholar 

  30. NIST, Mass attenuation coefficients, actual website (2017): https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients

    Google Scholar 

  31. NIST ESTAR database, actual website (2017): http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

    Google Scholar 

  32. Zheng Y, Hunting DJ, Ayotte P, Sanche L (2008) Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res 169(1):19–27

    Article  Google Scholar 

  33. Dvorak FH, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    Google Scholar 

  34. Zheng Y, Sanche L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat Res 172:114–119

    Article  Google Scholar 

Download references

Acknowledgements

Author thanks the useful collaboration with Prof. S. Cuzzocrea of the Dip.to di Scienze Chimiche – CBFA of Università di Messina. This research was supported by University of Messina Research & Mobility 2016 Project (project code RES_AND_MOB_2016_TORRISI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Torrisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrisi, L. Evaluation of the radiotherapy and proton therapy improvements using gold nanoparticles. Gold Bull 50, 299–311 (2017). https://doi.org/10.1007/s13404-017-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-017-0216-x

Keywords

Navigation