Skip to main content


Log in

PIN1 promotes the metastasis of cholangiocarcinoma cells by RACK1-mediated phosphorylation of ANXA2

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript



Cholangiocarcinoma (CCA), a primary hepatobiliary malignancy, is characterized by a poor prognosis and a lack of effective treatments. Therefore, the need to explore novel therapeutic approaches is urgent. While the role of Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (PIN1) has been extensively studied in various tumor types, its involvement in CCA remains poorly understood.


In this study, we employed tissue microarray (TMA), reverse transcription-polymerase chain reaction (RT-PCR), and The Cancer Genome Atlas (TCGA) database to assess the expression of PIN1. Through in vitro and in vivo functional experiments, we investigated the impact of PIN1 on the adhesion and metastasis of CCA. Additionally, we explored downstream molecular pathways using RNA-seq, western blotting, co-immunoprecipitation, immunofluorescence, and mass spectrometry techniques.


Our findings revealed a negative correlation between PIN1 overexpression and prognosis in CCA tissues. Furthermore, high PIN1 expression promoted CCA cell proliferation and migration. Mechanistically, PIN1 functioned as an oncogene by regulating ANXA2 phosphorylation, thereby promoting CCA adhesion. Notably, the interaction between PIN1 and ANXA2 was facilitated by RACK1. Importantly, pharmacological inhibition of PIN1 using the FDA-approved drug all-trans retinoic acid (ATRA) effectively suppressed the metastatic potential of CCA cells in a nude mouse lung metastasis model.


Overall, our study emphasizes the critical role of the PIN1/RACK1/ANXA2 complex in CCA growth and functionality, highlighting the potential of targeting PIN1 as a promising therapeutic strategy for CCA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets collected and/or analyzed during the current study are available from the corresponding author upon reasonable request, and the other part of the study data is detailed in the supplementary material.



Acute promyelocytic leukemia


All-trans-retinoic acid


Arsenic trioxide




Cell counting kit-8


Dimethyl sulfoxide


Gene expression omnibus


Peptidylprolyl cis/trans isomerase, NIMA-interacting 1


Pancreatic ductal adenocarcinoma


Phosphate-buffered saline


Intrahepatic cholangiocarcinoma






  1. B.J. Dwyer, E.J. Jarman, J. Gogoi-Tiwari, S. Ferreira-Gonzalez, L. Boulter, R.V. Guest, T.J. Kendall, D. Kurian, A.M. Kilpatrick, A.J. Robson, E. O’Duibhir, T.Y. Man, L. Campana, P.J. Starkey Lewis, S.J. Wigmore, J.K. Olynyk, G.A. Ramm, J.E.E. Tirnitz-Parker, S.J. Forbes, TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. J. Hepatol. 74, 860–872 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. P. Lindnér, M. Rizell, L. Hafström, The impact of changed strategies for patients with cholangiocarcinoma in this millenium. HPB Surg. 2015, 736049 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  3. S. Kamsa-Ard, V. Luvira, K. Suwanrungruang, S. Kamsa-Ard, V. Luvira, C. Santong, T. Srisuk, A. Pugkhem, V. Bhudhisawasdi, C. Pairojkul, Cholangiocarcinoma trends, incidence, and relative survival in Khon Kaen, Thailand from 1989 through 2013: a population-based cancer registry study. J. Epidemiol. 29, 197–204 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  4. E. Alabraba, H. Joshi, N. Bird, R. Griffin, R. Sturgess, N. Stern, C. Sieberhagen, T. Cross, A. Camenzuli, R. Davis, J. Evans, E. O’Grady, D. Palmer, R. Diaz-Nieto, S. Fenwick, G. Poston, H. Malik, Increased multimodality treatment options has improved survival for hepatocellular carcinoma but poor survival for biliary tract cancers remains unchanged. Eur. J. Surg. Oncol. 45, 1660–1667 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. B. Groot Koerkamp, J.K. Wiggers, P.J. Allen, M.G. Besselink, L.H. Blumgart, O.R. Busch, R.J. Coelen, M.I. D’Angelica, R.P. DeMatteo, D.J. Gouma, T.P. Kingham, W.R. Jarnagin, T.M. van Gulik, Recurrence rate and pattern of perihilar cholangiocarcinoma after curative intent resection. J. Am. College Surg. 221, 1041–1049 (2015)

    Article  Google Scholar 

  6. W.A. Cambridge, C. Fairfield, J.J. Powell, E.M. Harrison, K. Søreide, S.J. Wigmore, R.V. Guest, Meta-analysis and meta-regression of survival after liver transplantation for unresectable perihilar cholangiocarcinoma. Ann. Surg. 273, 240–250 (2021)

    Article  PubMed  Google Scholar 

  7. P.S. Steeg, Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. E.S. Yeh, A.R. Means, PIN1, the cell cycle and cancer. Nat. Rev. Cancer 7, 381–388 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. A. Galat, Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity–targets–functions. Curr. Top. Med. Chem. 3, 1315–1347 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. K.P. Lu, X.Z. Zhou, The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease, Nature reviews. Mol. Cell Biol. 8, 904–916 (2007)

    CAS  Google Scholar 

  11. S. Wei, S. Kozono, L. Kats, M. Nechama, W. Li, J. Guarnerio, M. Luo, M.H. You, Y. Yao, A. Kondo, H. Hu, G. Bozkurt, N.J. Moerke, S. Cao, M. Reschke, C.H. Chen, E.M. Rego, F. Lo-Coco, L.C. Cantley, T.H. Lee, H. Wu, Y. Zhang, P.P. Pandolfi, X.Z. Zhou, K.P. Lu, Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat. Med. 21, 457–466 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. K. Koikawa, S. Kibe, F. Suizu, N. Sekino, N. Kim, T.D. Manz, B.J. Pinch, D. Akshinthala, A. Verma, G. Gaglia, Y. Nezu, S. Ke, C. Qiu, K. Ohuchida, Y. Oda, T.H. Lee, B. Wegiel, J.G. Clohessy, N. London, S. Santagata, G.M. Wulf, M. Hidalgo, S.K. Muthuswamy, M. Nakamura, N.S. Gray, X.Z. Zhou, K.P. Lu, Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell 184, 4753–4771.e4727 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Lepore, P.M. Choy, N.C.W. Lee, M.A. Carella, R. Favicchio, M.A. Briones-Orta, S.S. Glaser, G. Alpini, C. D’Santos, R.M. Tooze, M. Lorger, W.K. Syn, A. Papakyriakou, G. Giamas, C. Bubici, S. Papa, Phosphorylation and stabilization of PIN1 by JNK promote intrahepatic cholangiocarcinoma growth. Hepatology 74, 2561–2579 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. D.S. Chandrashekar, S.K. Karthikeyan, P.K. Korla, H. Patel, A.R. Shovon, M. Athar, G.J. Netto, Z.S. Qin, S. Kumar, U. Manne, C.J. Creighton, S. Varambally, UALCAN: an update to the integrated cancer data analysis platform. Neoplasia (New York, N.Y.) 25, 18–27 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. D.S. Chandrashekar, B. Bashel, S.A.H. Balasubramanya, C.J. Creighton, I. Ponce-Rodriguez, B. Chakravarthi, S. Varambally, UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (New York, N.Y.) 19, 649–658 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Liu, H. Chen, X. Li, F. Zhang, L. Kong, X. Wang, J. Bai, X. Wu, PSMC2 regulates cell cycle progression through the p21/cyclin D1 pathway and predicts a poor prognosis in human hepatocellular carcinoma. Front. Oncol. 11, 607021 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. X. Wu, H. Chen, Q. Gao, J. Bai, X. Wang, J. Zhou, S. Qiu, Y. Xu, Y. Shi, X. Wang, J. Zhou, J. Fan, Downregulation of JWA promotes tumor invasion and predicts poor prognosis in human hepatocellular carcinoma. Mol. Carcinog. 53, 325–336 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. T. Zhou, Y. Zhang, Y. Chen, J. Shan, J. Wang, Y. Wang, J. Chang, W. Jiang, R. Chen, Z. Wang, X. Shi, Y. Yu, C. Li, X. Li, ROBO1 p.E280* loses the inhibitory effects on the proliferation and angiogenesis of wild-type ROBO1 in cholangiocarcinoma by interrupting SLIT2 signal. Front. Oncol. 12, 879963 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J.B. Andersen, B. Spee, B.R. Blechacz, I. Avital, M. Komuta, A. Barbour, E.A. Conner, M.C. Gillen, T. Roskams, L.R. Roberts, V.M. Factor, S.S. Thorgeirsson, Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 142, 1021–1031.e1015 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. K.S. Ahn, D. O’Brien, Y.N. Kang, T. Mounajjed, Y.H. Kim, T.S. Kim, J.A. Kocher, L.K. Allotey, M.J. Borad, L.R. Roberts, K.J. Kang, Prognostic subclass of intrahepatic cholangiocarcinoma by integrative molecular-clinical analysis and potential targeted approach. Hepatol. Int. 13, 490–500 (2019)

    Article  PubMed  Google Scholar 

  21. H. Hamidi, J. Ivaska, Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Jung, J. Wang, J. Song, Y. Shiozawa, J. Wang, A. Havens, Z. Wang, Y.X. Sun, S.G. Emerson, P.H. Krebsbach, R.S. Taichman, Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110, 82–90 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Zhang, T. Zhou, Z. Chen, M. Yan, B. Li, H. Lv, C. Wang, S. Xiang, L. Shi, Y. Zhu, D. Ai, Coupling of integrin α5 to annexin A2 by flow drives endothelial activation. Circ. Res. 127, 1074–1090 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. Z. Su, T.R. Shelite, Y. Qiu, Q. Chang, M. Wakamiya, J. Bei, X. He, C. Zhou, Y. Liu, E. Nyong, Y. Liang, A. Gaitas, T.B. Saito, B. Gong, Host EPAC1 modulates rickettsial adhesion to vascular endothelial cells via regulation of ANXA2 Y23 phosphorylation. Pathogens (Basel, Switzerland) 10, 1307 (2021)

    CAS  PubMed  Google Scholar 

  25. S.Z. Shalhout, P.Y. Yang, E.M. Grzelak, K. Nutsch, S. Shao, C. Zambaldo, J. Iaconelli, L. Ibrahim, C. Stanton, S.R. Chadwick, E. Chen, M. DeRan, S. Li, M. Hull, X. Wu, A.K. Chatterjee, W. Shen, F.D. Camargo, P.G. Schultz, M.J. Bollong, YAP-dependent proliferation by a small molecule targeting annexin A2. Nat. Chem. Biol. 17, 767–775 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. A.S. Farrell, C. Pelz, X. Wang, C.J. Daniel, Z. Wang, Y. Su, M. Janghorban, X. Zhang, C. Morgan, S. Impey, R.C. Sears, Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol. Cell. Biol. 33, 2930–2949 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. X.H. Liao, A.L. Zhang, M. Zheng, M.Q. Li, C.P. Chen, H. Xu, Q.S. Chu, D. Yang, W. Lu, T.F. Tsai, H. Liu, X.Z. Zhou, K.P. Lu, Chemical or genetic Pin1 inhibition exerts potent anticancer activity against hepatocellular carcinoma by blocking multiple cancer-driving pathways. Sci. Rep. 7, 43639 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. N. Razumilava, G.J. Gores, Cholangiocarcinoma. Lancet (London, England) 383, 2168–2179 (2014)

    Article  PubMed  Google Scholar 

  29. P.J. Brindley, M. Bachini, S.I. Ilyas, S.A. Khan, A. Loukas, A.E. Sirica, B.T. Teh, S. Wongkham, G.J. Gores, Cholangiocarcinoma. Nat. Rev. Dis. Primers 7, 65 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  30. X. Lian, Y.M. Lin, S. Kozono, M.K. Herbert, X. Li, X. Yuan, J. Guo, Y. Guo, M. Tang, J. Lin, Y. Huang, B. Wang, C. Qiu, C.Y. Tsai, J. Xie, Z.J. Gao, Y. Wu, H. Liu, X.Z. Zhou, K.P. Lu, Y. Chen, Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways. J. Hematol. Oncol. 11, 73 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  31. C. Liang, S. Shi, M. Liu, Y. Qin, Q. Meng, J. Hua, S. Ji, Y. Zhang, J. Yang, J. Xu, Q. Ni, M. Li, X. Yu, PIN1 maintains redox balance via the c-Myc/NRF2 axis to counteract kras-induced mitochondrial respiratory injury in pancreatic cancer cells. Cancer Res. 79, 133–145 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. J.E. Girardini, M. Napoli, S. Piazza, A. Rustighi, C. Marotta, E. Radaelli, V. Capaci, L. Jordan, P. Quinlan, A. Thompson, M. Mano, A. Rosato, T. Crook, E. Scanziani, A.R. Means, G. Lozano, C. Schneider, G. Del Sal, A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 20, 79–91 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. U. Jamiyandorj, J.S. Bae, S.J. Noh, S. Jachin, J.E. Choi, K.Y. Jang, M.J. Chung, M.J. Kang, D.G. Lee, W.S. Moon, Expression of peptidyl-prolyl isomerase PIN1 and its role in the pathogenesis of extrahepatic cholangiocarcinoma. Oncol. Lett. 6, 1421–1426 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. L. Ng, V. Kwan, A. Chow, T.C. Yau, R.T. Poon, R. Pang, W.L. Law, Overexpression of Pin1 and rho signaling partners correlates with metastatic behavior and poor recurrence-free survival of hepatocellular carcinoma patients. BMC Cancer 19, 713 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  35. J.S. Pyo, B.K. Son, I.H. Oh, Cytoplasmic Pin1 expression is correlated with poor prognosis in colorectal cancer. Pathol. Res. Pract. 214, 1848–1853 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. Q. Sun, G. Fan, Q. Zhuo, W. Dai, Z. Ye, S. Ji, W. Xu, W. Liu, Q. Hu, Z. Zhang, M. Liu, X. Yu, X. Xu, Y. Qin, Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-κB-IL-18 feedback loop. Cell Prolif. 53, e12816 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J.A. Spijkers-Hagelstein, S. Mimoso Pinhanços, P. Schneider, R. Pieters, R.W. Stam, Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 27, 1063–1071 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. J.S. Menell, G.M. Cesarman, A.T. Jacovina, M.A. McLaughlin, E.A. Lev, K.A. Hajjar, Annexin II and bleeding in acute promyelocytic leukemia. N. Engl. J. Med. 340, 994–1004 (1999)

    Article  CAS  PubMed  Google Scholar 

  39. M.R. Sharma, L. Koltowski, R.T. Ownbey, G.P. Tuszynski, M.C. Sharma, Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp. Mol. Pathol. 81, 146–156 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. K. Emoto, Y. Yamada, H. Sawada, H. Fujimoto, M. Ueno, T. Takayama, K. Kamada, A. Naito, S. Hirao, Y. Nakajima, Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92, 1419–1426 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. B.J. Roseman, A. Bollen, J. Hsu, K. Lamborn, M.A. Israel, Annexin II marks astrocytic brain tumors of high histologic grade. Oncol. Res. 6, 561–567 (1994)

    CAS  PubMed  Google Scholar 

  42. J. Wang, L. Deng, H. Zhuang, J. Liu, D. Liu, X. Li, S. Jin, L. Zhu, H. Wang, B. Lin, Interaction of HE4 and ANXA2 exists in various malignant cells-HE4-ANXA2-MMP2 protein complex promotes cell migration. Cancer Cell Int. 19, 161 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  43. T. Garrido-Gómez, N. Castillo-Marco, T. Cordero, C. Simón, Decidualization resistance in the origin of preeclampsia. Am. J. Obstet. Gynecol. 226, S886–s894 (2022)

    Article  PubMed  Google Scholar 

  44. S. Ma, C.C. Lu, L.Y. Yang, J.J. Wang, B.S. Wang, H.Q. Cai, J.J. Hao, X. Xu, Y. Cai, Y. Zhang, M.R. Wang, ANXA2 promotes esophageal cancer progression by activating MYC-HIF1A-VEGF axis. J. Exp. Clin. Cancer Res. 37, 183 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  45. D.R. Adams, D. Ron, P.A. Kiely, RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun. Signal. 9, 22 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. F. Hu, Z. Tao, M. Wang, G. Li, Y. Zhang, H. Zhong, H. Xiao, X. Xie, M. Ju, RACK1 promoted the growth and migration of the cancer cells in the progression of esophageal squamous cell carcinoma. Tumour. Biol. 34, 3893–3899 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. Y. Fan, W. Si, W. Ji, Z. Wang, Z. Gao, R. Tian, W. Song, H. Zhang, R. Niu, F. Zhang, Rack1 mediates tyrosine phosphorylation of Anxa2 by Src and promotes invasion and metastasis in drug-resistant breast cancer cells. Breast Cancer Res. 21, 66 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  48. Y. Yang, N. Wu, Z. Wang, F. Zhang, R. Tian, W. Ji, X. Ren, R. Niu, Rack1 mediates the interaction of P-glycoprotein with Anxa2 and regulates migration and invasion of multidrug-resistant breast cancer cells. Int. J. Mol. Sci. 17, 1718 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Q.L. Lv, Y.T. Huang, G.H. Wang, Y.L. Liu, J. Huang, Q. Qu, B. Sun, L. Hu, L. Cheng, S.H. Chen, H.H. Zhou, Overexpression of RACK1 promotes metastasis by enhancing epithelial-mesenchymal transition and predicts poor prognosis in human glioma. Int. J. Environ. Res. Public Health 13, 1021 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  50. W. Wu, X. Xue, Y. Chen, N. Zheng, J. Wang, Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharmacol. Res. 184, 106456 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references


We acknowledge our colleagues for their valuable efforts and comments on this paper.


We gratefully acknowledge the support of the following grants for this work: National Natural Science Foundation of China (81472306), National Natural Science Foundation of China (82102150), Special Fund for Talents of the Jiangsu Province Hospital (YNRCZN015), and the Natural Science Foundation of Jiangsu Province (BK20210968).

Author information

Authors and Affiliations



Conception and design: YMW, GWJ, XFW; Development of methodology: YMW, YWL, WJJ, XX, JJS, JC, TZ; Collection and acquisition of data: YMW, ZGX, HRC, JFW, ALCY; Analysis of data: YMW, ZGX, HRC, SLF, ZFT, KS; Writing, review, and/or revision of the manuscript: YMW, YWL, XCL, XFC, GWJ, XFW. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaofeng Chen, Guwei Ji or Xiaofeng Wu.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Research Ethics Committee of the First Affiliated Hospital of Nanjing Medical University, and informed consent was obtained from each participant. Animal studies were approved by the Nanjing Medical University (NJMU) Institutional Animal Care and Use Committee (Quorum No. IACUC-2203004).

Consent for publication

Not applicable.

Conflict of interest

The authors declare that the study was conducted without any commercial or financial relationships that could be interpreted as potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y., Chen, H. et al. PIN1 promotes the metastasis of cholangiocarcinoma cells by RACK1-mediated phosphorylation of ANXA2. Cell Oncol. (2024).

Download citation

  • Accepted:

  • Published:

  • DOI: