Skip to main content

Advertisement

Log in

Repaglinide restrains HCC development and progression by targeting FOXO3/lumican/p53 axis

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

The recent focus on the roles of N-linked glycoproteins in carcinogenesis across various malignancies has prompted our exploration of aberrantly expressed glycoproteins responsible for HCC progression and potential therapeutic strategy.

Methods

Mass spectrometry was applied to initially identify abnormally expressed glycoproteins in HCC, which was further assessed by immunohistochemistry (IHC) staining. The role of selected glycoprotein on HCC development and underlying mechanism was systematically investigated by colony formation, mouse xenograft, RNA-sequencing and western blot assays, etc. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to explore potential transcription factors (TFs) of selected glycoprotein. The regulation of repaglinide (RPG) on expression of lumican and downstream effectors was assessed by western blot and IHC, while its impact on malignant phenotypes of HCC was explored through in vitro and in vivo analyses, including a murine NASH-HCC model established using western diet and carbon tetrachloride (CCl4).

Results

Lumican exhibited upregulation in both serum and tumor tissue, with elevated expression associated with an inferior prognosis in HCC patients. Knockdown of lumican resulted in significantly reduced growth of HCC in vitro and in vivo. Mechanically, lumican promoted HCC malignant phenotypes by inhibiting the p53/p21 signaling pathway. Forkhead Box O3 (FOXO3) was identified as the TF of lumican that transcriptionally enhanced its expression. Without silencing FOXO3, RPG blocked the binding of FOXO3 to the promoter region of lumican, thereby inhibiting the activation of lumican/p53/p21 axis. Mice treated with RPG developed fewer and smaller HCCs than those in the control group at 24 weeks after establishment.

Conclusion

Our results indicate that RPG prevented the development and progression of HCC via alteration of FOXO3/lumican/p53 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AFP:

Alpha-fetoprotein

ALT:

Alanine aminotransferase

ALB:

Albumin

APS:

Ammonium persulfate

AST:

Aspartate aminotransferase

AUC:

Area under curve

BCLC:

Barcelona Clinic Liver Cancer

BS:

Binding site

CF:

Core-fucosylation

ChIP:

Chromatin immunoprecipitation

CCl4 :

Carbon tetrachloride

DDA:

Data dependent acquisition

DMSO:

Dimethylsulfoxide

EMT:

Epithelial-mesenchymal transition

FOXO3:

Forkhead Box O3

HCC:

Hepatocellular carcinoma

IC50:

Half maximal inhibitory concentration

IHC:

Immunohistochemistry

MVI:

Microvascular invasion

PBS:

Phosphate buffer saline

PCR:

Polymerase chain reaction

PRM:

Parallel Reaction Monitoring

PVTT:

Portal vein tumor thrombosis

ROC:

Receiver operating characteristic curve

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

SLRP:

Small leucine-rich proteoglycan

STAT3:

Signal transducer and activator of transcription 3

TBL:

Total bilirubin

TCGA:

The Cancer Genome Atlas

TF:

Transcription Factor

WD:

Western diet

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, CA Cancer J. Clin. 71, 209–249 (2021). https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Q. Zhang, Y. Lou, J. Yang, J. Wang, J. Feng, Y. Zhao, L. Wang, X. Huang, Q. Fu, M. Ye, X. Zhang, Y. Chen, C. Ma, H. Ge, J. Wang, J. Wu, T. Wei, Q. Chen, J. Wu, C. Yu, Y. Xiao, X. Feng, G. Guo, T. Liang, X. Bai, Gut 68, 2019–2031 (2019). https://doi.org/10.1136/gutjnl-2019-318912

    Article  CAS  PubMed  Google Scholar 

  3. S.S. Pinho, C.A. Reis, Nat. Rev. Cancer 15, 540–555 (2015). https://doi.org/10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  4. C. Liao, J. An, S. Yi, Z. Tan, H. Wang, H. Li, X. Guan, J. Liu, Q. Wang, J. Cancer 12, 4109–4120 (2021). https://doi.org/10.7150/jca.58268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. Antonarelli, V. Pieri, F.M. Porta, N. Fusco, G. Finocchiaro, G. Curigliano, C. Criscitiello, Cells 12 (2023). https://doi.org/10.3390/cells12060840

  6. Y. Zhou, T. Fukuda, Q. Hang, S. Hou, T. Isaji, A. Kameyama, J. Gu, Sci. Rep. 7, 11563 (2017). https://doi.org/10.1038/s41598-017-11911-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. F. Li, S. Zhao, Y. Cui, T. Guo, J. Qiang, Q. Xie, W. Yu, W. Guo, W. Deng, C. Gu, T. Wu, Am. J. Cancer Res. 10, 816–837 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. P. Agrawal, B. Fontanals-Cirera, E. Sokolova, S. Jacob, C.A. Vaiana, D. Argibay, V. Davalos, M. McDermott, S. Nayak, F. Darvishian, M. Castillo, B. Ueberheide, I. Osman, D. Fenyö, L.K. Mahal, E. Hernando, Cancer Cell 31, 804–819 e807 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G.S.M. Kammeijer, J. Nouta, J. de la Rosette, T.M. de Reijke, M. Wuhrer, Anal. Chem. 90, 4414–4421 (2018). https://doi.org/10.1021/acs.analchem.7b04281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. H. Yin, Z. Lin, S. Nie, J. Wu, Z. Tan, J. Zhu, J. Dai, Z. Feng, J. Marrero, D.M. Lubman, J. Proteome Res. 13, 2887–2896 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. Yin, Z. Tan, J. Wu, J. Zhu, K.A. Shedden, J. Marrero, D.M. Lubman, J. Proteome Res. 14, 4876–4884 (2015). https://doi.org/10.1021/acs.jproteome.5b00718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Shang, A. Plymoth, S. Ge, Z. Feng, H.R. Rosen, S. Sangrajrang, P. Hainaut, J.A. Marrero, L. Beretta, Hepatology 55, 483–490 (2012). https://doi.org/10.1002/hep.24703

    Article  CAS  PubMed  Google Scholar 

  13. A.D. Nardo, N.G. Grun, M. Zeyda, M. Dumanic, G. Oberhuber, E. Rivelles, T.H. Helbich, D.F. Markgraf, M. Roden, T. Claudel, M. Trauner, T.M. Stulnig, Liver Int. 40, 1620–1633 (2020). https://doi.org/10.1111/liv.14464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X. Gao, Y. Sheng, J. Yang, C. Wang, R. Zhang, Y. Zhu, Z. Zhang, K. Zhang, S. Yan, H. Sun, J. Wei, X. Wang, X. Yu, Y. Zhang, Q. Luo, Y. Zheng, P. Qiao, Y. Zhao, Q. Dong, L. Qin, J. Exp. Clin. Cancer Res. 37, 179 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  15. K. Stavenhagen, H. Hinneburg, M. Thaysen-Andersen, L. Hartmann, D. Varón Silva, J. Fuchser, S. Kaspar, E. Rapp, P.H. Seeberger, D. Kolarich, J. Mass Spectrom. 48, 627–639 (2013). https://doi.org/10.1002/jms.3210

    Article  ADS  CAS  PubMed  Google Scholar 

  16. L. Cao, N. Tolić, Y. Qu, D. Meng, R. Zhao, Q. Zhang, R.J. Moore, E.M. Zink, M.S. Lipton, L. Paša-Tolić, S. Wu, Anal. Biochem. 452, 96–102 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Tan, J. Zhu, C.D. Gutierrez Reyes, Y. Lin, Z. Tan, Z. Wu, J. Zhang, A. Cano, S. Verschleisser, Y. Mechref, A.G. Singal, N.D. Parikh, D.M. Lubman, ACS Omega 8, 12467–12480 (2023). https://doi.org/10.1021/acsomega.3c00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L. Yang, W.L. Deng, B.G. Zhao, Y. Xu, X.W. Wang, Y. Fang, H.J. Xiao, Cancer Gene Ther. 29, 326–340 (2022). https://doi.org/10.1038/s41417-021-00312-w

    Article  CAS  PubMed  Google Scholar 

  19. W. Chen, J. Jiang, L. Gong, Z. Shu, D. Xiang, X. Zhang, K. Bi, H. Diao, J. Exp. Clin. Cancer Res. 40(1) (2021). https://doi.org/10.1186/s13046-020-01803-8

  20. Y. Cheng, P. Zhan, J. Lu, Y. Lu, C. Luo, X. Cen, F. Wang, C. Xie, Z. Yin, Liver Int. 43, 1577–1592 (2023). https://doi.org/10.1111/liv.15611

    Article  CAS  PubMed  Google Scholar 

  21. M. Ballmann, D. Hubert, B.M. Assael, D. Staab, A. Hebestreit, L. Naehrlich, T. Nickolay, N. Prinz, R.W. Holl, Lancet Diabetes Endocrinol. 6, 114–121 (2018). https://doi.org/10.1016/s2213-8587(17)30400-x

    Article  CAS  PubMed  Google Scholar 

  22. S. Salcher, G. Spoden, J.M. Huber, G. Golderer, H. Lindner, M.J. Ausserlechner, U. Kiechl-Kohlendorfer, K. Geiger, P. Obexer, Cells 9 (2019). https://doi.org/10.3390/cells9010001

  23. A. Jin, Y. Hong, Y. Yang, H. Xu, X. Huang, X. Gao, X. Gong, Q. Dai, L. Jiang, J. Dent. Res. 101, 196–205 (2022). https://doi.org/10.1177/00220345211021534

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhou, Y. Chen, X. Zhang, Q. Xu, Z. Wu, X. Cao, M. Shao, Y. Shu, T. Lv, C. Lu, M. Xie, T. Wen, J. Yang, Y. Shi, H. Bu, Hepatology 74, 797–815 (2021). https://doi.org/10.1002/hep.31780

    Article  CAS  PubMed  Google Scholar 

  25. T. Tsuchida, Y.A. Lee, N. Fujiwara, M. Ybanez, B. Allen, S. Martins, M.I. Fiel, N. Goossens, H.I. Chou, Y. Hoshida, S.L. Friedman, J. Hepatol. 69, 385–395 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  26. S. Sribenja, K. Sawanyawisuth, R. Kraiklang, C. Wongkham, K. Vaeteewoottacharn, S. Obchoei, Q. Yao, S. Wongkham, C. Chen, BMC Cancer 13, 430 (2013). https://doi.org/10.1186/1471-2407-13-430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K. Engeland, Cell Death Differ. 29, 946–960 (2022). https://doi.org/10.1038/s41418-022-00988-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. F. Fontana, M. Marzagalli, M. Raimondi, V. Zuco, N. Zaffaroni, P. Limonta, Cell Prolif. 54, e13111 (2021). https://doi.org/10.1111/cpr.13111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E.M. Kim, C.H. Jung, J. Kim, S.G. Hwang, J.K. Park, H.D. Um, Cancer Res. 77, 3092–3100 (2017). https://doi.org/10.1158/0008-5472.Can-16-2098

    Article  CAS  PubMed  Google Scholar 

  30. Z. Ma, Z. Li, S. Wang, Z. Zhou, C. Liu, H. Zhuang, Q. Zhou, S. Huang, C. Zhang, B. Hou, J. Exp. Clin. Cancer Res. 41, 130 (2022). https://doi.org/10.1186/s13046-022-02310-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E.S. Wong, D. Thybert, B.M. Schmitt, K. Stefflova, D.T. Odom, P. Flicek, Genome Res. 25, 167–178 (2015). https://doi.org/10.1101/gr.177840.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O. Fornes, J.A. Castro-Mondragon, A. Khan, R. van der Lee, X. Zhang, P.A. Richmond, B.P. Modi, S. Correard, M. Gheorghe, D. Baranasic, W. Santana-Garcia, G. Tan, J. Cheneby, B. Ballester, F. Parcy, A. Sandelin, B. Lenhard, W.W. Wasserman, A. Mathelier, Nucleic Acids Res. 48, D87–D92 (2020). https://doi.org/10.1093/nar/gkz1001

    Article  CAS  PubMed  Google Scholar 

  33. S. Li, X. Wei, J. He, Q. Cao, D. Du, X. Zhan, Y. Zeng, S. Yuan, L. Sun, Cancer Metastasis Rev. 40, 925–948 (2021). https://doi.org/10.1007/s10555-021-09973-3

    Article  CAS  PubMed  Google Scholar 

  34. H. Hu, Y.R. Miao, L.H. Jia, Q.Y. Yu, Q. Zhang, A.Y. Guo, Nucleic Acids Res. 47, D33–D38 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Wu, H. Du, M. Zhan, H. Wang, P. Chen, D. Du, X. Liu, X. Huang, P. Ma, D. Peng, L. Sun, S. Yuan, J. Ding, L. Lu, J. Jiang, Cell Death Discov. 11, 248 (2020). https://doi.org/10.1038/s41419-020-2471-7

    Article  CAS  Google Scholar 

  36. X. Wang, Q. Zhou, Z. Yu, X. Wu, X. Chen, J. Li, C. Li, M. Yan, Z. Zhu, B. Liu, L. Su, Int. J. Cancer 141, 998–1010 (2017). https://doi.org/10.1002/ijc.30801

    Article  CAS  PubMed  Google Scholar 

  37. W. Mao, M. Luo, X. Huang, Q. Wang, J. Fan, L. Gao, Y. Zhang, J. Geng, Transl. Oncol. 12, 1072–1078 (2019). https://doi.org/10.1016/j.tranon.2019.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  38. K. Karamanou, M. Franchi, D. Vynios, S. Brezillon, Semin. Cancer Biol. 62, 125–133 (2020). https://doi.org/10.1016/j.semcancer.2019.08.003

    Article  CAS  PubMed  Google Scholar 

  39. C.T. Yang, J.M. Li, W.K. Chu, S.E. Chow, Cell Death Discov. 9, 414 (2018). https://doi.org/10.1038/s41419-017-0212-3

    Article  CAS  Google Scholar 

  40. X. Chen, X. Li, X. Hu, F. Jiang, Y. Shen, R. Xu, L. Wu, P. Wei, X. Shen, Front. Oncol. 10, 605 (2020). https://doi.org/10.3389/fonc.2020.00605

    Article  PubMed  PubMed Central  Google Scholar 

  41. L.R. Pack, L.H. Daigh, M. Chung, T. Meyer, Nat. Commun. 12, 3356 (2021). https://doi.org/10.1038/s41467-021-23612-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. A. Papoutsidakis, E.M. Giatagana, A. Berdiaki, I. Spyridaki, D.A. Spandidos, A. Tsatsakis, G.N. Tzanakakis, D. Nikitovic, Int. J. Oncol. 57, 791–803 (2020). https://doi.org/10.3892/ijo.2020.5094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D. Dhar, L. Antonucci, H. Nakagawa, J.Y. Kim, E. Glitzner, S. Caruso, S. Shalapour, L. Yang, M.A. Valasek, S. Lee, K. Minnich, E. Seki, J. Tuckermann, M. Sibilia, J. Zucman-Rossi, M. Karin, Cancer Cell 33, 1061–1077 e1066 (2018). https://doi.org/10.1016/j.ccell.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Lu, D. Hartmann, R. Braren, A. Gupta, B. Wang, Y. Wang, C. Mogler, Z. Cheng, T. Wirth, H. Friess, J. Kleeff, N. Huser, Y. Sunami, BMC Cancer 19, 887 (2019). https://doi.org/10.1186/s12885-019-6110-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. F. Fondevila, P. Fernandez-Palanca, C. Mendez-Blanco, T. Payo-Serafin, E. Lozano, J.J.G. Marin, J. Gonzalez-Gallego, J.L. Mauriz, Cancers (Basel) 13 (2021). https://doi.org/10.3390/cancers13215349

  46. S. de Oliveira, R.A. Houseright, A.L. Graves, N. Golenberg, B.G. Korte, V. Miskolci, A. Huttenlocher, J. Hepatol. 70, 710–721 (2019). https://doi.org/10.1016/j.jhep.2018.11.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Guang Yang and Guangneng Liao for their help with the mice management. We also acknowledge the support provided by LC-Bio company (Hangzhou, China) with the RNA sequencing and related analysis experiments. We also acknowledge the support provided by Fangfang Wang (Institute of hematology, West China Hospital) with flow cytometry assay and related analysis.

Funding

This work was supported by grants from the Natural Science Foundation of China (NO. 82173255, 82270691 and 82273330), the Key R&D projects of Sichuan Provincial Department of Science and Technology (NO. 2022YFS0253, 2023YFS0026).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Y. T., Y. Z., and Y. S.; Development of methodology: Y. T., Y. Z., W. Z., Z. W., Q. X.; Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): Y. T., Y. Z., W. Z., Q. W., Jian Y. and T. L.; Analysis and interpretation of data: Y. T., Y. Z., L. Y. and Y. S.; Writing, review, and/or revision of the manuscript: Y. T., Y. Z., Jia. Y and H. L.; Administrative, technical, or material support: Y. Z., Q. W. and Y. S.; Study supervision: Jia. Y., Y. S. and H. L.

Corresponding authors

Correspondence to Hong Luo, Yujun Shi or Jiayin Yang.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the ethics committee of the West China Hospital, Sichuan University. The protocols applied in the current study conformed to the ethical guidelines of 1975 Declaration of Helsinki, and written informed consent were provided by all patients.

Consent for publication

All authors have reviewed the final version of the manuscript and approved it for publication.

Competing interests

None of the authors have any competing interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhou, Y., Zhang, W. et al. Repaglinide restrains HCC development and progression by targeting FOXO3/lumican/p53 axis. Cell Oncol. (2024). https://doi.org/10.1007/s13402-024-00919-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-024-00919-9

Keywords

Navigation