Skip to main content

Advertisement

Log in

O-GlcNAcylation of TRIM29 and OGT translation forms a feedback loop to promote adaptive response of PDAC cells to glucose deficiency

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy.

Methods

Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells.

Results

The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29.

Conclusions

Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data in this study will be available from the corresponding author on reasonable request.

References

  1. E. Hessmann, S.M. Buchholz, I.E. Demir, S.K. Singh, T.M. Gress, V. Ellenrieder, A. Neesse, Physiol. Rev. 100, 1707–1751 (2020). https://doi.org/10.1152/physrev.00042.2019

    Article  PubMed  Google Scholar 

  2. Y. Qian, Y. Gong, Z. Fan, G. Luo, Q. Huang, S. Deng, H. Cheng, K. Jin, Q. Ni, X. Yu, C. Liu, J. Hematol. Oncol. 13, 130 (2020). https://doi.org/10.1186/s13045-020-00958-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. Seufferlein, T.J. Ettrich, Transl. Gastroenterol. Hepatol. 4, 21 (2019). https://doi.org/10.21037/tgh.2019.03.05

    Article  PubMed  PubMed Central  Google Scholar 

  4. Z. Nsingwane, G. Candy, J. Devar, J. Omoshoro-Jones, M. Smith, E. Nweke, Mol. Biol. Rep. 47, 6269–6280 (2020). https://doi.org/10.1007/s11033-020-05648-4

    Article  CAS  PubMed  Google Scholar 

  5. V. Purohit, L. Wang, H. Yang, J. Li, G.M. Ney, E.R. Gumkowski, A.J. Vaidya, A. Wang, A. Bhardwaj, E. Zhao, I. Dolgalev, A. Zamperone, E.V. Abel, M.P.D. Magliano, H.C. Crawford, D. Diolaiti, T.Y. Papagiannakopoulos, C.A. Lyssiotis, D.M. Simeone, Genes Dev. 35, 218–233 (2021). https://doi.org/10.1101/gad.344184.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Ghashghaeinia, M. Koberle, U. Mrowietz, I. Bernhardt, Cell Cycle 18, 1316–1334 (2019). https://doi.org/10.1080/15384101.2019.1618125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. Zhao, X. Hu, Y. Liu, S. Dong, Z. Wen, W. He, S. Zhang, Q. Huang, M. Shi, Mol. Cancer 16, 79 (2017). https://doi.org/10.1186/s12943-017-0648-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. N. Hay, Nat. Rev. Cancer 16, 635–649 (2016). https://doi.org/10.1038/nrc.2016.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Science 324, 1029–1033 (2009). https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. M.G. Vander Heiden, R.J. DeBerardinis, Cell 168, 657–669 (2017). https://doi.org/10.1016/j.cell.2016.12.039

    Article  CAS  PubMed  Google Scholar 

  11. K. Ohshima, E. Morii, Metabolites 11 (2021). https://doi.org/10.3390/metabo11010028

  12. L. Yan, P. Raj, W. Yao, H. Ying, Cancers (Basel) 11 (2019). https://doi.org/10.3390/cancers11101460

  13. N.M. Akella, L. Ciraku, M.J. Reginato, BMC Biol. 17, 52 (2019). https://doi.org/10.1186/s12915-019-0671-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.B. Lee, K.H. Pyo, H.R. Kim, Cancers (Basel) 13 (2021). https://doi.org/10.3390/cancers13215365

  15. F. Chiaradonna, F. Ricciardiello, R. Palorini, Cells 7 (2018). https://doi.org/10.3390/cells7060053

  16. E. Ju Kim, Chembiochem 21, 3026–3035 (2020). https://doi.org/10.1002/cbic.202000194

    Article  CAS  PubMed  Google Scholar 

  17. D.T. King, A. Males, G.J. Davies, D.J. Vocadlo, Curr. Opin. Chem. Biol. 53, 131–144 (2019). https://doi.org/10.1016/j.cbpa.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  18. H. Nie, W. Yi, J. Zhejiang Univ. Sci. B 20, 437–448 (2019). https://doi.org/10.1631/jzus.B1900150

    Article  PubMed  PubMed Central  Google Scholar 

  19. C. Slawson, G.W. Hart, Nat. Rev. Cancer 11, 678–684 (2011). https://doi.org/10.1038/nrc3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Q. Ong, W. Han, X. Yang, Front. Endocrinol. (Lausanne) 9, 599 (2018). https://doi.org/10.3389/fendo.2018.00599

    Article  PubMed  Google Scholar 

  21. J.C. Chatham, J. Zhang, A.R. Wende, Physiol. Rev. 101, 427–493 (2021). https://doi.org/10.1152/physrev.00043.2019

    Article  CAS  PubMed  Google Scholar 

  22. G.W. Hart, J. Biol. Chem. 294, 2211–2231 (2019). https://doi.org/10.1074/jbc.AW119.003226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. X. Li, Z. Wu, J. He, Y. Jin, C. Chu, Y. Cao, F. Gu, H. Wang, C. Hou, X. Liu, Q. Zou, Oncogene 40, 4859–4871 (2021). https://doi.org/10.1038/s41388-021-01901-7

    Article  CAS  PubMed  Google Scholar 

  24. H.G. Seo, H.B. Kim, J.Y. Yoon, T.H. Kweon, Y.S. Park, J. Kang, J. Jung, S. Son, E.C. Yi, T.H. Lee, W.H. Yang, J.W. Cho, Cell Death Dis. 11, 815 (2020). https://doi.org/10.1038/s41419-020-02999-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. Xing, L. Weng, B. Yuan, Z. Wang, L. Jia, R. Jin, H. Lu, X.C. Li, Y.J. Liu, Z. Zhang, Nat. Immunol. 17, 1479 (2016). https://doi.org/10.1038/ni1216-1479a

    Article  CAS  PubMed  Google Scholar 

  26. X. Deng, X. Fu, H. Teng, L. Fang, B. Liang, R. Zeng, L. Chen, Y. Zou, J. Transl. Med. 19, 332 (2021). https://doi.org/10.1186/s12967-021-03007-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Huang, Y. Fu, Y. Deng, Biochem. Biophys. Reports 28, 101117 (2021). https://doi.org/10.1016/j.bbrep.2021.101117

    Article  CAS  Google Scholar 

  28. Q. Li, L. Lin, Y. Tong, Y. Liu, J. Mou, X. Wang, X. Wang, Y. Gong, Y. Zhao, Y. Liu, B. Zhong, L. Dai, Y.Q. Wei, H. Zhang, H. Hu, Cell Discov. 4, 13 (2018). https://doi.org/10.1038/s41421-018-0010-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Xing, A. Zhang, H. Zhang, J. Wang, X.C. Li, M.S. Zeng, Z. Zhang, Nat. Commun. 8, 945 (2017). https://doi.org/10.1038/s41467-017-00101-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. L. Ai, W.J. Kim, M. Alpay, M. Tang, C.E. Pardo, S. Hatakeyama, W.S. May, M.P. Kladde, C.D. Heldermon, E.M. Siegel, K.D. Brown, Cancer Res. 74, 4875–4887 (2014). https://doi.org/10.1158/0008-5472.CAN-13-3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Kanno, M. Watanabe, T. Kimura, K. Nonomura, S. Tanaka, S. Hatakeyama, Acta Histochem. 116, 708–712 (2014). https://doi.org/10.1016/j.acthis.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  32. N. Jiang, W.J. Chen, J.W. Zhang, C. Xu, X.C. Zeng, T. Zhang, Y. Li, G.Y. Wang, Oncotarget 6, 7866–7879 (2015). https://doi.org/10.18632/oncotarget.3492

    Article  PubMed  PubMed Central  Google Scholar 

  33. H. Sun, X. Dai, B. Han, Dis. Markers 2014, 317817 (2014). https://doi.org/10.1155/2014/317817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A.D. Santin, F. Zhan, S. Bellone, M. Palmieri, S. Cane, E. Bignotti, S. Anfossi, M. Gokden, D. Dunn, J.J. Roman, T.J. O’Brien, E. Tian, M.J. Cannon, J. Shaughnessy Jr., S. Pecorelli, Int. J. Cancer 112, 14–25 (2004). https://doi.org/10.1002/ijc.20408

    Article  CAS  PubMed  Google Scholar 

  35. Z. Yuan, A. Villagra, L. Peng, D. Coppola, M. Glozak, E.M. Sotomayor, J. Chen, W.S. Lane, E. Seto, Mol. Cell. Biol. 30, 3004–3015 (2010). https://doi.org/10.1128/MCB.01023-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Chandana, H.M. Babiker, D. Mahadevan, Expert Opin. Investig. Drugs 28, 161–177 (2019). https://doi.org/10.1080/13543784.2019.1557145

    Article  CAS  PubMed  Google Scholar 

  37. R. Buono, V.D. Longo, Trends Endocrinol. Metab. 29, 271–280 (2018). https://doi.org/10.1016/j.tem.2018.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J.M. Wang, B.Q. Liu, Z.X. Du, C. Li, J. Sun, J. Yan, J.Y. Jiang, H.Q. Wang, J. Cell Mol. Med. 24, 562–572 (2020). https://doi.org/10.1111/jcmm.14764

    Article  CAS  PubMed  Google Scholar 

  39. C. Lam, J.Y. Low, P.T. Tran, H. Wang, Cancer Lett. 503, 11–18 (2021). https://doi.org/10.1016/j.canlet.2021.01.010

    Article  CAS  PubMed  Google Scholar 

  40. X. Yang, K. Qian, Nat. Rev. Mol. Cell. Biol. 18, 452–465 (2017). https://doi.org/10.1038/nrm.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Qian, S. Wang, M. Fu, J. Zhou, J.P. Singh, M.D. Li, Y. Yang, K. Zhang, J. Wu, Y. Nie, H.B. Ruan, X. Yang, J. Biol. Chem. 293, 13989–14000 (2018). https://doi.org/10.1074/jbc.RA118.004709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. A.K. Olson, B. Bouchard, W.Z. Zhu, J.C. Chatham, C. Des Rosiers, J. Biol. Chem. 295, 2018–2033 (2020). https://doi.org/10.1074/jbc.RA119.010565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Jia, H. Li, D. Fu, Y. Lan, BioMed. Res. Int. 2020, 1921609 (2020). https://doi.org/10.1155/2020/1921609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Aquino-Gil, A. Pierce, Y. Perez-Cervera, E. Zenteno, T. Lefebvre, Biochem. Soc. Trans. 45, 365–370 (2017). https://doi.org/10.1042/BST20160404

    Article  CAS  PubMed  Google Scholar 

  45. N.S. Sharma, V.K. Gupta, P. Dauer, K. Kesh, R. Hadad, B. Giri, A. Chandra, V. Dudeja, C. Slawson, S. Banerjee, S.M. Vickers, A. Saluja, S. Banerjee, Theranostics 9, 3410–3424 (2019). https://doi.org/10.7150/thno.32615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. N. Sonenberg, A.G. Hinnebusch, Mol. Cell 28, 721–729 (2007). https://doi.org/10.1016/j.molcel.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  47. W.C. Merrick, G.D. Pavitt, Cold Spring Harb. Perspect. Biol. 10 (2018). https://doi.org/10.1101/cshperspect.a033092

  48. A. Fukao, T. Tomohiro, T. Fujiwara, Cells 10 (2021). https://doi.org/10.3390/cells10071711

  49. H. Ramos, A. Monette, M. Niu, A. Barrera, B. Lopez-Ulloa, Y. Fuentes, P. Guizar, K. Pino, L. DesGroseillers, A.J. Mouland, M. Lopez-Lastra, Nucleic Acids Res. 50, 411–429 (2022). https://doi.org/10.1093/nar/gkab1188

    Article  CAS  PubMed  Google Scholar 

  50. S. Li, J. Shao, G. Lou, C. Wu, Y. Liu, M. Zheng, J. Exp. Clin. Cancer Res. 40, 53 (2021). https://doi.org/10.1186/s13046-021-01853-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S.A. Haizel, U. Bhardwaj, G. R.l. Jr., S. Mitra, D.J. Goss, J. Biol. Chem. 295, 11693–11706 (2020). https://doi.org/10.1074/jbc.RA120.013678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. V.V. Smirnova, E.D. Shestakova, D.V. Bikmetov, A.A. Chugunova, I.A. Osterman, M.V. Serebryakova, O.V. Sergeeva, T.S. Zatsepin, I.N. Shatsky, I.M. Terenin, RNA 25, 757–767 (2019). https://doi.org/10.1261/rna.065623.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. G. Hernandez, J.L. Ramirez, A. Pedroza-Torres, L.A. Herrera, M.A. Jimenez-Rios, Front. Genet. 10, 14 (2019). https://doi.org/10.3389/fgene.2019.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. V.V. Smirnova, E.D. Shestakova, D.S. Nogina, P.A. Mishchenko, T.A. Prikazchikova, T.S. Zatsepin, I.V. Kulakovskiy, I.N. Shatsky, I.M. Terenin, Nucleic Acids Res. 50, 1111–1127 (2022). https://doi.org/10.1093/nar/gkab1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. L. Marash, N. Liberman, S. Henis-Korenblit, G. Sivan, E. Reem, O. Elroy-Stein, A. Kimchi, Mol. Cell 30, 447–459 (2008). https://doi.org/10.1016/j.molcel.2008.03.018

    Article  CAS  PubMed  Google Scholar 

  56. C. Sanchez-Jimenez, J.M. Izquierdo, Cell Cycle 14, 2033–2043 (2015). https://doi.org/10.1080/15384101.2015.1053668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. I. Carrascoso, B.R. Velasco, J.M. Izquierdo, Int. J. Mol. Sci. 22 (2021). https://doi.org/10.3390/ijms222312775

  58. T. Kawai, A. Lal, X. Yang, S. Galban, K. Mazan-Mamczarz, M. Gorospe, Mol. Cell. Biol. 26, 3295–3307 (2006). https://doi.org/10.1128/MCB.26.8.3295-3307.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. S. Yamasaki, G. Stoecklin, N. Kedersha, M. Simarro, P. Anderson, J. Biol. Chem. 282, 30070–30077 (2007). https://doi.org/10.1074/jbc.M706273200

    Article  CAS  PubMed  Google Scholar 

  60. R. Reyes, J. Alcalde, J.M. Izquierdo, Genome Biol. 10, R87 (2009). https://doi.org/10.1186/gb-2009-10-8-r87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. J.M. Izquierdo, N. Majos, S. Bonnal, C. Martinez, R. Castelo, R. Guigo, D. Bilbao, J. Valcarcel, Mol. Cell 19, 475–484 (2005). https://doi.org/10.1016/j.molcel.2005.06.015

    Article  CAS  PubMed  Google Scholar 

  62. C. Sanchez-Jimenez, M.D. Ludena, J.M. Izquierdo, Cell Death Dis. 6, e1669 (2015). https://doi.org/10.1038/cddis.2015.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. S. Hofmann, N. Kedersha, P. Anderson, P. Ivanov, Biochim. Biophys. Acta Mol. Cell. Res. 1868, 118876 (2021). https://doi.org/10.1016/j.bbamcr.2020.118876

    Article  CAS  PubMed  Google Scholar 

  64. A. Khong, T. Matheny, S. Jain, S.F. Mitchell, J.R. Wheeler, R. Parker, Mol. Cell 68, 808–820 e805 (2017). https://doi.org/10.1016/j.molcel.2017.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S. Hatakeyama, Expert Opin. Ther. Targets 20, 767–770 (2016). https://doi.org/10.1517/14728222.2016.1148687

    Article  PubMed  Google Scholar 

  66. L. Hao, J.M. Wang, B.Q. Liu, J. Yan, C. Li, J.Y. Jiang, F.Y. Zhao, H.Y. Qiao, H.Q. Wang, Biochim. Biophys. Acta Mol. Cell. Res. 1868, 118878 (2021). https://doi.org/10.1016/j.bbamcr.2020.118878

    Article  CAS  PubMed  Google Scholar 

  67. T.M. Harris, P. Du, N. Kawachi, T.J. Belbin, Y. Wang, N.F. Schlecht, T.J. Ow, C.E. Keller, G.J. Childs, R.V. Smith, R.H. Angeletti, M.B. Prystowsky, J. Lim, Arch. Pathol. Lab. Med. 139, 494–507 (2015). https://doi.org/10.5858/arpa.2014-0131-OA

    Article  CAS  PubMed  Google Scholar 

  68. W. Lai, J. Zhao, C. Zhang, D. Cui, J. Lin, Y. He, H. Zheng, X. Wu, M. Yang, Dis. Esophagus 26, 817–822 (2013). https://doi.org/10.1111/j.1442-2050.2012.01400.x

    Article  CAS  PubMed  Google Scholar 

  69. L. Hao, Q. Zhang, H.Y. Qiao, F.Y. Zhao, J.Y. Jiang, L.Y. Huyan, B.Q. Liu, J. Yan, C. Li, H.Q. Wang, Mol. Ther. Nucleic Acids 24, 579–590 (2021). https://doi.org/10.1016/j.omtn.2021.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. J. Sun, J. Yan, H.Y. Qiao, F.Y. Zhao, C. Li, J.Y. Jiang, B.Q. Liu, X.N. Meng, H.Q. Wang, Oncogene 39, 546–559 (2020). https://doi.org/10.1038/s41388-019-0992-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Key Laboratory of Cell Biology in Ministry of Public Health, and Key Laboratory of Medical Cell Biology in Ministry of Education of China Medical University for providing experimental platform.

Funding

This work was partly supported by National Natural Science Foundation of China (32071258, 82203337); Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (22KJB320017); Supporting project of Nanjing University of Chinese Medicine to NSFC (XPT82203337); Doctoral Start-up Foundation of Liaoning Province (2021-BS-093); Doctoral Start-up Foundation of Liaoning Province (2020-BS-101).

Author information

Authors and Affiliations

Authors

Contributions

JS and HW designed this study; FZ, XC, JW and YY performed the experiments; XC, JS, JW, CL analyzed the data; HW and FZ wrote the manuscript. All authors have contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Jia Sun or Hua-Qin Wang.

Ethics declarations

Consent for publication

Written informed consent for publication was obtained from all participants.

Conflict of interest

There is no conflict of interests in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, FY., Chen, X., Wang, JM. et al. O-GlcNAcylation of TRIM29 and OGT translation forms a feedback loop to promote adaptive response of PDAC cells to glucose deficiency. Cell Oncol. (2024). https://doi.org/10.1007/s13402-023-00915-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-023-00915-5

Keywords

Navigation