Skip to main content
Log in

Ferritinophagy induced ferroptosis in the management of cancer

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Ferroptosis, a newly form of regulated cell death (RCD), is characterized by iron dyshomeostasis and unrestricted lipid peroxidation. Emerging evidence depicts a pivotal role for ferroptosis in driving some pathological processes, especially in cancer. Triggering ferroptosis can suppress tumor growth and induce an anti-tumor immune response, denoting the therapeutic promises for targeting ferroptosis in the management of cancer. As an autophagic phenomenon, ferritinophagy is critical to induce ferroptosis by degradation of ferritin to release intracellular free iron. Recently, a great deal of effort has gone into designing and developing anti-cancer strategies based on targeting ferritinophagy to induce ferroptosis.

Conclusion

This review delineates the regulatory mechanism of ferritinophagy firstly and summarizes the role of ferritinophagy-induced ferroptosis in cancer. Moreover, the strategies targeting ferritinophagy to induce ferroptosis are highlighted to unveil the therapeutic value of ferritinophagy as a target to manage cancer. Finally, the future research directions on how to cope with the challenges in developing ferritinophagy promoters into clinical therapeutics are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. M. Gao, X. Jiang, To eat or not to eat-the metabolic flavor of ferroptosis. Curr. Opin. Cell Biol. 51, 58–64 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. L. Galluzzi, I. Vitale, S.A. Aaronson, J.M. Abrams, D. Adam, P. Agostinis, E.S. Alnemri, L. Altucci, I. Amelio, D.W. Andrews, M. Annicchiarico-Petruzzelli, A.V. Antonov, E. Arama, E.H. Baehrecke, N.A. Barlev, N.G. Bazan, F. Bernassola, M.J.M. Bertrand, K. Bianchi, M.V. Blagosklonny, K. Blomgren, C. Borner, P. Boya, C. Brenner, M. Campanella, E. Candi, D. Carmona-Gutierrez, F. Cecconi, F.K. Chan, N.S. Chandel, E.H. Cheng, J.E. Chipuk, J.A. Cidlowski, A. Ciechanover, G.M. Cohen, M. Conrad, J.R. Cubillos-Ruiz, P.E. Czabotar, V. D’Angiolella, T.M. Dawson, V.L. Dawson, V. De Laurenzi, R. De Maria, K.M. Debatin, R.J. DeBerardinis, M. Deshmukh, N. Di Daniele, F. Di Virgilio, V.M. Dixit, S.J. Dixon, C.S. Duckett, B.D. Dynlacht, W.S. El-Deiry, J.W. Elrod, G.M. Fimia, S. Fulda, A.J. García-Sáez, A.D. Garg, C. Garrido, E. Gavathiotis, P. Golstein, E. Gottlieb, D.R. Green, L.A. Greene, H. Gronemeyer, A. Gross, G. Hajnoczky, J.M. Hardwick, I.S. Harris, M.O. Hengartner, C. Hetz, H. Ichijo, M. Jäättelä, B. Joseph, P.J. Jost, P.P. Juin, W.J. Kaiser, M. Karin, T. Kaufmann, O. Kepp, A. Kimchi, R.N. Kitsis, D.J. Klionsky, R.A. Knight, S. Kumar, S.W. Lee, J.J. Lemasters, B. Levine, A. Linkermann, S.A. Lipton, R.A. Lockshin, C. López-Otín, S.W. Lowe, T. Luedde, E. Lugli, M. MacFarlane, F. Madeo, M. Malewicz, W. Malorni, G. Manic, J.C. Marine, S.J. Martin, J.C. Martinou, J.P. Medema, P. Mehlen, P. Meier, S. Melino, E.A. Miao, J.D. Molkentin, U.M. Moll, C. Muñoz-Pinedo, S. Nagata, G. Nuñez, A. Oberst, M. Oren, M. Overholtzer, M. Pagano, T. Panaretakis, M. Pasparakis, J.M. Penninger, D.M. Pereira, S. Pervaiz, M.E. Peter, M. Piacentini, P. Pinton, J.H.M. Prehn, H. Puthalakath, G.A. Rabinovich, M. Rehm, R. Rizzuto, C.M.P. Rodrigues, D.C. Rubinsztein, T. Rudel, K.M. Ryan, E. Sayan, L. Scorrano, F. Shao, Y. Shi, J. Silke, H.U. Simon, A. Sistigu, B.R. Stockwell, A. Strasser, G. Szabadkai, S.W.G. Tait, D. Tang, N. Tavernarakis, A. Thorburn, Y. Tsujimoto, B. Turk, T. VandenBerghe, P. Vandenabeele, M.G. Vander Heiden, A. Villunger, H.W. Virgin, K.H. Vousden, D. Vucic, E.F. Wagner, H. Walczak, D. Wallach, Y. Wang, J.A. Wells, W. Wood, J. Yuan, Z. Zakeri, B. Zhivotovsky, L. Zitvogel, G. Melino, G. Kroemer, Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  3. E. Koren, Y. Fuchs, Modes of regulated cell death in cancer. Cancer Discov. 11, 245–265 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. S.J. Dixon, B.R. Stockwell, The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. D. Tang, G. Kroemer, Ferroptosis. Curr. Biol. 30, R1292-r1297 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. Y. Xie, W. Hou, X. Song, Y. Yu, J. Huang, X. Sun, R. Kang, D. Tang, Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, C.E. Gleason, D.N. Patel, A.J. Bauer, A.M. Cantley, W.S. Yang, B. Morrison 3rd., B.R. Stockwell, Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. W. Wang, M. Green, J.E. Choi, M. Gijón, P.D. Kennedy, J.K. Johnson, P. Liao, X. Lang, I. Kryczek, A. Sell, H. Xia, J. Zhou, G. Li, J. Li, W. Li, S. Wei, L. Vatan, H. Zhang, W. Szeliga, W. Gu, R. Liu, T.S. Lawrence, C. Lamb, Y. Tanno, M. Cieslik, E. Stone, G. Georgiou, T.A. Chan, A. Chinnaiyan, W. Zou, CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. J.P. FriedmannAngeli, D.V. Krysko, M. Conrad, Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019)

    Article  CAS  Google Scholar 

  10. H. Chang, Z. Zou, Targeting autophagy to overcome drug resistance: further developments. J. Hematol. Oncol. 13, 159 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  11. B. Levine, N. Mizushima, H.W. Virgin, Autophagy in immunity and inflammation. Nature 469, 323–335 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Gao, P. Monian, Q. Pan, W. Zhang, J. Xiang, X. Jiang, Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Ajoolabady, H. Aslkhodapasandhokmabad, P. Libby, J. Tuomilehto, G.Y.H. Lip, J.M. Penninger, D.R. Richardson, D. Tang, H. Zhou, S. Wang, D.J. Klionsky, G. Kroemer, J. Ren, Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol. Metab. 32, 444–462 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. G.O. Latunde-Dada, Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta Gen. Subj. 1861, 1893–1900 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. B.R. Stockwell, X. Jiang, W. Gu, Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30, 478–490 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. Tang, X. Chen, R. Kang, G. Kroemer, Ferroptosis: molecular mechanisms and health implications. Cell Res. 31, 107–125 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Bai, L. Meng, L. Han, Y. Jia, Y. Zhao, H. Gao, R. Kang, X. Wang, D. Tang, E. Dai, Lipid storage and lipophagy regulates ferroptosis. Biochem. Biophys. Res. Commun. 508, 997–1003 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. M. Yang, P. Chen, J. Liu, S. Zhu, G. Kroemer, D.J. Klionsky, M.T. Lotze, H.J. Zeh, R. Kang, D. Tang, Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci. Adv. 5, eaaw2238 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Z. Wu, Y. Geng, X. Lu, Y. Shi, G. Wu, M. Zhang, B. Shan, H. Pan, J. Yuan, Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 116, 2996–3005 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Gao, J. Yi, J. Zhu, A.M. Minikes, P. Monian, C.B. Thompson, X. Jiang, Role of mitochondria in ferroptosis. Mol. Cell. 73, 354-363.e353 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. M.U. Muckenthaler, S. Rivella, M.W. Hentze, B. Galy, A red carpet for iron metabolism. Cell 168, 344–361 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K. Gkouvatsos, G. Papanikolaou, K. Pantopoulos, Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta 1820, 188–202 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Cheng, O. Zak, P. Aisen, S.C. Harrison, T. Walz, Structure of the human transferrin receptor-transferrin complex. Cell 116, 565–576 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. M.W. Hentze, M.U. Muckenthaler, B. Galy, C. Camaschella, Two to tango: regulation of Mammalian iron metabolism. Cell 142, 24–38 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. S. Puig, L. Ramos-Alonso, A.M. Romero, M.T. Martínez-Pastor, The elemental role of iron in DNA synthesis and repair. Metallomics 9, 1483–1500 (2017)

    Article  PubMed  Google Scholar 

  26. D.M. Ward, S.M. Cloonan, Mitochondrial Iron in Human Health and Disease. Annu Rev Physiol. 81, 453–482 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. P.M. Harrison, P. Arosio, The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203 (1996)

    Article  PubMed  Google Scholar 

  28. S. Levi, B. Corsi, M. Bosisio, R. Invernizzi, A. Volz, D. Sanford, P. Arosio, J. Drysdale, A human mitochondrial ferritin encoded by an intronless gene. J. Biol. Chem. 276, 24437–24440 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. B. Corsi, A. Cozzi, P. Arosio, J. Drysdale, P. Santambrogio, A. Campanella, G. Biasiotto, A. Albertini, S. Levi, Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J. Biol. Chem. 277, 22430–22437 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. P. Arosio, L. Elia, M. Poli, Ferritin, cellular iron storage and regulation. IUBMB Life 69, 414–422 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. T.A. Rouault, N. Maio, Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J. Biol. Chem. 292, 12744–12753 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C. Monaco, R. Visconti, M.V. Barone, G.M. Pierantoni, M.T. Berlingieri, C. De Lorenzo, A. Mineo, G. Vecchio, A. Fusco, M. Santoro, The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane. Oncogene 20, 599–608 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. T. Asano, M. Komatsu, Y. Yamaguchi-Iwai, F. Ishikawa, N. Mizushima, K. Iwai, Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell Biol. 31, 2040–2052 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R. Bellelli, M.D. Castellone, T. Guida, R. Limongello, N.A. Dathan, F. Merolla, A.M. Cirafici, A. Affuso, H. Masai, V. Costanzo, D. Grieco, A. Fusco, M. Santoro, F. Carlomagno, NCOA4 transcriptional coactivator inhibits activation of DNA replication origins. Mol. Cell. 55, 123–137 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. T. Gao, K. Brantley, E. Bolu, M.J. McPhaul, RFG (ARA70, ELE1) interacts with the human androgen receptor in a ligand-dependent fashion, but functions only weakly as a coactivator in cotransfection assays. Mol. Endocrinol. 13, 1645–1656 (1999)

    Article  CAS  PubMed  Google Scholar 

  36. W.E. Dowdle, B. Nyfeler, J. Nagel, R.A. Elling, S. Liu, E. Triantafellow, S. Menon, Z. Wang, A. Honda, G. Pardee, J. Cantwell, C. Luu, I. Cornella-Taracido, E. Harrington, P. Fekkes, H. Lei, Q. Fang, M.E. Digan, D. Burdick, A.F. Powers, S.B. Helliwell, S. D’Aquin, J. Bastien, H. Wang, D. Wiederschain, J. Kuerth, P. Bergman, D. Schwalb, J. Thomas, S. Ugwonali, F. Harbinski, J. Tallarico, C.J. Wilson, V.E. Myer, J.A. Porter, D.E. Bussiere, P.M. Finan, M.A. Labow, X. Mao, L.G. Hamann, B.D. Manning, R.A. Valdez, T. Nicholson, M. Schirle, M.S. Knapp, E.P. Keaney, L.O. Murphy, Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. J.D. Mancias, X. Wang, S.P. Gygi, J.W. Harper, A.C. Kimmelman, Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Gryzik, A. Srivastava, G. Longhi, M. Bertuzzi, A. Gianoncelli, F. Carmona, M. Poli, P. Arosio, Expression and characterization of the ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4). Biochim. Biophys. Acta Gen. Subj. 1861, 2710–2716 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. J.D. Mancias, L. Pontano Vaites, S. Nissim, D.E. Biancur, A.J. Kim, X. Wang, Y. Liu, W. Goessling, A.C. Kimmelman, J.W. Harper, Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife 4, e10308 (2015)

  40. K. Li, B. Chen, A. Xu, J. Shen, K. Li, K. Hao, R. Hao, W. Yang, W. Jiang, Y. Zheng, F. Ge, Z. Wang, TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biol. 56, 102451 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D.J. Klionsky, J.M. Cregg, W.A. Dunn Jr., S.D. Emr, Y. Sakai, I.V. Sandoval, A. Sibirny, S. Subramani, M. Thumm, M. Veenhuis, Y. Ohsumi, A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539–545 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. H. Nakatogawa, K. Suzuki, Y. Kamada, Y. Ohsumi, Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009)

    Article  CAS  PubMed  Google Scholar 

  43. Y. Xie, R. Kang, X. Sun, M. Zhong, J. Huang, D.J. Klionsky, D. Tang, Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11, 28–45 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. R. Bellelli, G. Federico, A. Matte’, D. Colecchia, A. Iolascon, M. Chiariello, M. Santoro, L. De Franceschi, F. Carlomagno, NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. 14, 411–421 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. W. Hou, Y. Xie, X. Song, X. Sun, M.T. Lotze, H.J. Zeh 3rd., R. Kang, D. Tang, Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. X. Qin, J. Zhang, B. Wang, G. Xu, X. Yang, Z. Zou, C. Yu, Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 17, 4266–4285 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. Kishi-Itakura, I. Koyama-Honda, E. Itakura, N. Mizushima, Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 127, 4089–4102 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. J.M. Goodwin, W.E. Dowdle, R. DeJesus, Z. Wang, P. Bergman, M. Kobylarz, A. Lindeman, R.J. Xavier, G. McAllister, B. Nyfeler, G. Hoffman, L.O. Murphy, Autophagy-independent lysosomal targeting regulated by ULK1/2-FIP200 and ATG9. Cell Rep. 20, 2341–2356 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Z. Zhang, M. Guo, Y. Li, M. Shen, D. Kong, J. Shao, H. Ding, S. Tan, A. Chen, F. Zhang, S. Zheng, RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 16, 1482–1505 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. V. Lahiri, W.D. Hawkins, D.J. Klionsky, Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab. 29, 803–826 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D.H. Manz, N.L. Blanchette, B.T. Paul, F.M. Torti, S.V. Torti, Iron and cancer: recent insights. Ann. N. Y. Acad. Sci. 1368, 149–161 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. D. Basuli, L. Tesfay, Z. Deng, B. Paul, Y. Yamamoto, G. Ning, W. Xian, F. McKeon, M. Lynch, C.P. Crum, P. Hegde, M. Brewer, X. Wang, L.D. Miller, N. Dyment, F.M. Torti, S.V. Torti, Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 36, 4089–4099 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. F. Zhang, W. Wang, Y. Tsuji, S.V. Torti, F.M. Torti, Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest. J. Biol. Chem. 283, 33911–33918 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. C. Mertens, J. Mora, B. Ören, S. Grein, S. Winslow, K. Scholich, A. Weigert, P. Malmström, C. Forsare, M. Fernö, T. Schmid, B. Brüne, M. Jung, Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. Oncoimmunology 7, e1408751 (2018)

    Article  PubMed  Google Scholar 

  55. S. Recalcati, M. Locati, A. Marini, P. Santambrogio, F. Zaninotto, M. De Pizzol, L. Zammataro, D. Girelli, G. Cairo, Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol. 40, 824–835 (2010)

    Article  CAS  PubMed  Google Scholar 

  56. M.A. Bevilacqua, M.C. Faniello, T. Russo, F. Cimino, F. Costanzo, P/CAF/p300 complex binds the promoter for the heavy subunit of ferritin and contributes to its tissue-specific expression. Biochem. J. 335(Pt 3), 521–525 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Y. Tsuji, N. Akebi, T.K. Lam, Y. Nakabeppu, S.V. Torti, F.M. Torti, FER-1, an enhancer of the ferritin H gene and a target of E1A-mediated transcriptional repression. Mol. Cell Biol. 15, 5152–5164 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. K.J. Wu, A. Polack, R. Dalla-Favera, Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283, 676–679 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. O. Kakhlon, Y. Gruenbaum, Z.I. Cabantchik, Repression of ferritin expression modulates cell responsiveness to H-ras-induced growth. Biochem. Soc. Trans. 30, 777–780 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. A. Cozzi, B. Corsi, S. Levi, P. Santambrogio, A. Albertini, P. Arosio, Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. J. Biol. Chem. 275, 25122–25129 (2000)

    Article  CAS  PubMed  Google Scholar 

  61. S. Rockfield, I. Flores, M. Nanjundan, Expression and function of nuclear receptor coactivator 4 isoforms in transformed endometriotic and malignant ovarian cells. Oncotarget 9, 5344–5367 (2018)

    Article  PubMed  Google Scholar 

  62. P.A. Shaw, P.V. Rittenberg, T.J. Brown, Activation of androgen receptor-associated protein 70 (ARA70) mRNA expression in ovarian cancer. Gynecol. Oncol. 80, 132–138 (2001)

    Article  CAS  PubMed  Google Scholar 

  63. Y. Peng, C.X. Li, F. Chen, Z. Wang, M. Ligr, J. Melamed, J. Wei, W. Gerald, M. Pagano, M.J. Garabedian, P. Lee, Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70. Am. J. Pathol. 172, 225–235 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. X. Wu, F. Chen, A. Sahin, C. Albarracin, Z. Pei, X. Zou, B. Singh, R. Xu, G. Daniels, Y. Li, J. Wei, M. Blake, R.J. Schneider, P. Cowin, P. Lee, Distinct function of androgen receptor coactivator ARA70α and ARA70β in mammary gland development, and in breast cancer. Breast Cancer Res. Treat. 128, 391–400 (2011)

    Article  CAS  PubMed  Google Scholar 

  65. P.S. Steeg, Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. A. Hoshino, D. Lyden, Metastasis: lymphatic detours for cancer. Nature 546, 609–610 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  67. V. Mittal, Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 13, 395–412 (2018)

    Article  CAS  PubMed  Google Scholar 

  68. A. Dongre, R.A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019)

    Article  CAS  PubMed  Google Scholar 

  69. S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. D. Pei, X. Shu, A. Gassama-Diagne, J.P. Thiery, Mesenchymal-epithelial transition in development and reprogramming. Nat. Cell Biol. 21, 44–53 (2019)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Sun, C. Li, J. Feng, Y. Li, X. Zhai, L. Zhang, C. Li, Ferritinophagic Flux Activation in CT26 Cells Contributed to EMT Inhibition Induced by a Novel Iron Chelator, DpdtpA. Oxid. Med. Cell. Longev. 2019, 1–14 (2019)

    Google Scholar 

  72. D. Guan, W. Zhou, H. Wei, T. Wang, K. Zheng, C. Yang, R. Feng, R. Xu, Y. Fu, C. Li, Y. Li, C. Li, Ferritinophagy-Mediated Ferroptosis and Activation of Keap1/Nrf2/HO-1 Pathway Were Conducive to EMT Inhibition of Gastric Cancer Cells in Action of 2,2’-Di-pyridineketone Hydrazone Dithiocarbamate Butyric Acid Ester. Oxid. Med. Cell. Longev. 2022, 3920664 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  73. H. Li, W. Zhou, H. Wei, L. Li, X. Wang, Y. Li, S. Li, C. Li, Ferritinophagic Flux Was a Driving Force in Determination of Status of EMT, Ferroptosis, and NDRG1 Activation in Action of Mechanism of 2-Pyridylhydrazone Dithiocarbamate S-Acetic Acid. J. Oncol. 2021, 3015710 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  74. J. Feng, C. Li, R. Xu, Y. Li, Q. Hou, R. Feng, S. Wang, L. Zhang, C. Li, DpdtC-Induced EMT inhibition in MGC-803 cells was partly through Ferritinophagy-Mediated ROS/p53 pathway. Oxid. Med. Cell. Longev. 2020, 9762390 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  75. Z. Jiang, S.O. Lim, M. Yan, J.L. Hsu, J. Yao, Y. Wei, S.S. Chang, H. Yamaguchi, H.H. Lee, B. Ke, J.M. Hsu, L.C. Chan, G.N. Hortobagyi, L. Yang, C. Lin, D. Yu, M.C. Hung, TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J. Clin. Invest. 131, e139434 (2021)

  76. W.S. Yang, R. SriRamaratnam, M.E. Welsch, K. Shimada, R. Skouta, V.S. Viswanathan, J.H. Cheah, P.A. Clemons, A.F. Shamji, C.B. Clish, L.M. Brown, A.W. Girotti, V.W. Cornish, S.L. Schreiber, B.R. Stockwell, Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. V.A.N. Kraft, C.T. Bezjian, S. Pfeiffer, L. Ringelstetter, C. Müller, F. Zandkarimi, J. Merl-Pham, X. Bao, N. Anastasov, J. Kössl, S. Brandner, J.D. Daniels, P. Schmitt-Kopplin, S.M. Hauck, B.R. Stockwell, K. Hadian, J.A. Schick, GTP Cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020)

    Article  CAS  PubMed  Google Scholar 

  78. M. Soula, R.A. Weber, O. Zilka, H. Alwaseem, K. La, F. Yen, H. Molina, J. Garcia-Bermudez, D.A. Pratt, K. Birsoy, Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Q. Hu, W. Wei, D. Wu, F. Huang, M. Li, W. Li, J. Yin, Y. Peng, Y. Lu, Q. Zhao, L. Liu, Blockade of GCH1/BH4 Axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis. Front. Cell Dev. Biol. 10, 810327 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  80. Y. Wang, M. Wang, H.X. Wu, R.H. Xu, Advancing to the era of cancer immunotherapy. Cancer Commun. (Lond) 41, 803–829 (2021)

    Article  PubMed  Google Scholar 

  81. L. Zhao, X. Zhou, F. Xie, L. Zhang, H. Yan, J. Huang, C. Zhang, F. Zhou, J. Chen, L. Zhang, Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. (Lond) 42, 88–116 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  82. C. Xu, S. Sun, T. Johnson, R. Qi, S. Zhang, J. Zhang, K. Yang, The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 35, 109235 (2021)

    Article  CAS  PubMed  Google Scholar 

  83. E.P. Skaar, The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 6, e1000949 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  84. R. Sottile, G. Federico, C. Garofalo, R. Tallerico, M.C. Faniello, B. Quaresima, C.M. Cristiani, M. Di Sanzo, G. Cuda, V. Ventura, A.K. Wagner, G. Contrò, N. Perrotti, E. Gulletta, S. Ferrone, K. Kärre, F.S. Costanzo, F. Carlomagno, E. Carbone, Iron and ferritin modulate MHC Class I expression and NK Cell recognition. Front. Immunol. 10, 224 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Y. Mou, J. Wu, Y. Zhang, O. Abdihamid, C. Duan, B. Li, Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma. BMC Cancer 21, 18 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. T. Zuo, T. Fang, J. Zhang, J. Yang, R. Xu, Z. Wang, H. Deng, Q. Shen, pH-Sensitive molecular-switch-containing polymer nanoparticle for breast cancer therapy with ferritinophagy-cascade ferroptosis and tumor immune activation. Adv. Healthc. Mater. 10, e2100683 (2021)

    Article  PubMed  Google Scholar 

  87. W. Sun, J. Yan, H. Ma, J. Wu, Y. Zhang, Autophagy-dependent ferroptosis-related signature is closely associated with the prognosis and tumor immune escape of patients with glioma. Int. J. Gen. Med. 15, 253–270 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. R. Kim, A. Hashimoto, N. Markosyan, V.A. Tyurin, Y.Y. Tyurina, G. Kar, S. Fu, M. Sehgal, L. Garcia-Gerique, A. Kossenkov, B.A. Gebregziabher, J.W. Tobias, K. Hicks, R.A. Halpin, N. Cvetesic, H. Deng, L. Donthireddy, A. Greenberg, B. Nam, R.H. Vonderheide, Y. Nefedova, V.E. Kagan, D.I. Gabrilovich, Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. X. Ma, L. Xiao, L. Liu, L. Ye, P. Su, E. Bi, Q. Wang, M. Yang, J. Qian, Q. Yi, CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001-1012 e1005 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. N. Li, W. Wang, H. Zhou, Q. Wu, M. Duan, C. Liu, H. Wu, W. Deng, D. Shen, Q. Tang, Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic. Biol. Med. 160, 303–318 (2020)

    Article  CAS  PubMed  Google Scholar 

  91. M. Tang, Z. Huang, X. Luo, M. Liu, L. Wang, Z. Qi, S. Huang, J. Zhong, J.X. Chen, L. Li, D. Wu, L. Chen, Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radic. Biol. Med. 134, 445–457 (2019)

    Article  CAS  PubMed  Google Scholar 

  92. T.T. Mai, A. Hamaï, A. Hienzsch, T. Cañeque, S. Müller, J. Wicinski, O. Cabaud, C. Leroy, A. David, V. Acevedo, A. Ryo, C. Ginestier, D. Birnbaum, E. Charafe-Jauffret, P. Codogno, M. Mehrpour, R. Rodriguez, Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9, 1025–1033 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. S. Ma, E.S. Henson, Y. Chen, S.B. Gibson, Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7, e2307 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. V. Trujillo-Alonso, E.C. Pratt, H. Zong, A. Lara-Martinez, C. Kaittanis, M.O. Rabie, V. Longo, M.W. Becker, G.J. Roboz, J. Grimm, M.L. Guzman, FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol. 14, 616–622 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. M. Gryzik, M. Asperti, A. Denardo, P. Arosio, M. Poli, NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells. Biochim. Biophys. Acta Mol. Cell. Res. 1868, 118913 (2021)

    Article  CAS  PubMed  Google Scholar 

  96. G. Wei, M. Wang, T. Hyslop, Z. Wang, B.I. Carr, Vitamin K enhancement of sorafenib-mediated HCC cell growth inhibition in vitro and in vivo. Int. J. Cancer 127, 2949–2958 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. W. Dong, Y. Tan, Q. Qin, B. Yang, Q. Zhu, L. Xu, Z. Liu, E. Song, Y. Song, Polybrominated diphenyl ethers quinone induces NCOA4-mediated ferritinophagy through selectively autophagic degradation of ferritin. Chem. Res. Toxicol. 32, 2509–2516 (2019)

    Article  CAS  PubMed  Google Scholar 

  98. T. Huang, Y. Sun, Y. Li, T. Wang, Y. Fu, C. Li, C. Li, Growth inhibition of a novel iron chelator, DpdtC, against hepatoma carcinoma cell lines partly attributed to ferritinophagy-mediated lysosomal ROS generation. Oxid. Med. Cell. Longev. 2018, 4928703 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  99. S. Sui, J. Zhang, S. Xu, Q. Wang, P. Wang, D. Pang, Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis. 10, 331 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  100. N.D. Yang, S.H. Tan, S. Ng, Y. Shi, J. Zhou, K.S. Tan, W.S. Wong, H.M. Shen, Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J. Biol. Chem. 289, 33425–33441 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Z.J. Li, H.Q. Dai, X.W. Huang, J. Feng, J.H. Deng, Z.X. Wang, X.M. Yang, Y.J. Liu, Y. Wu, P.H. Chen, H. Shi, J.G. Wang, J. Zhou, G.D. Lu, Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol. Sin. 42, 301–310 (2021)

    Article  CAS  PubMed  Google Scholar 

  102. S. Masaldan, S.A.S. Clatworthy, C. Gamell, P.M. Meggyesy, A.T. Rigopoulos, S. Haupt, Y. Haupt, D. Denoyer, P.A. Adlard, A.I. Bush, M.A. Cater, Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 14, 100–115 (2018)

    Article  CAS  PubMed  Google Scholar 

  103. J. Xiao, S. Zhang, B. Tu, X. Jiang, S. Cheng, Q. Tang, J. Zhang, X. Qin, B. Wang, Z. Zou, C. Chen, Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy. Food Chem. Toxicol. 151, 2509–2516 (2021)

  104. P.-L. Lin, H.-H. Tang, S.-Y. Wu, N.-S. Shaw, C.-L. Su, Saponin formosanin C-Induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells. Antioxidants 9, 682 (2020)

  105. C. Zhao, D. Yu, Z. He, L. Bao, L. Feng, L. Chen, Z. Liu, X. Hu, N. Zhang, T. Wang, Y. Fu, Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells. Free Radic. Biol Med. 175, 236–248 (2021)

    Article  CAS  PubMed  Google Scholar 

  106. T. Oliveira, E. Hermann, D. Lin, W. Chowanadisai, E. Hull, M. Montgomery, HDAC inhibition induces EMT and alterations in cellular iron homeostasis to augment ferroptosis sensitivity in SW13 cells. Redox Biol. 47, 102149 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. T.R. Daniels, T. Delgado, G. Helguera, M.L. Penichet, The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immunol. 121, 159–176 (2006)

    Article  CAS  PubMed  Google Scholar 

  108. T.R. Daniels, T. Delgado, J.A. Rodriguez, G. Helguera, M.L. Penichet, The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 121, 144–158 (2006)

    Article  CAS  PubMed  Google Scholar 

  109. C.R. Chitambar, J.P. Wereley, Transferrin receptor-dependent and -independent iron transport in gallium-resistant human lymphoid leukemic cells. Blood 91, 4686–4693 (1998)

    Article  CAS  PubMed  Google Scholar 

  110. H. Yamanishi, S. Iyama, Y. Yamaguchi, Y. Kanakura, Y. Iwatani, Total iron-binding capacity calculated from serum transferrin concentration or serum iron concentration and unsaturated iron-binding capacity. Clin. Chem. 49, 175–178 (2003)

    Article  CAS  PubMed  Google Scholar 

  111. W.E. Ho, H.Y. Peh, T.K. Chan, W.S. Wong, Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol. Ther. 142, 126–139 (2014)

    Article  CAS  PubMed  Google Scholar 

  112. Z. Kong, R. Liu, Y. Cheng, Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 109, 2043–2053 (2019)

    Article  CAS  PubMed  Google Scholar 

  113. G.J. Anderson, D.M. Frazer, Current understanding of iron homeostasis. Am. J. Clin. Nutr. 106, 1559s–1566s (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  114. S.J. Dixon, D.N. Patel, M. Welsch, R. Skouta, E.D. Lee, M. Hayano, A.G. Thomas, C.E. Gleason, N.P. Tatonetti, B.S. Slusher, B.R. Stockwell, Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3, e02523 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  115. D.L. Zhang, J. Wu, B.N. Shah, K.C. Greutélaers, M.C. Ghosh, H. Ollivierre, X.Z. Su, P.E. Thuma, G. Bedu-Addo, F.P. Mockenhaupt, V.R. Gordeuk, T.A. Rouault, Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science 359, 1520–1523 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. A. Donovan, C.A. Lima, J.L. Pinkus, G.S. Pinkus, L.I. Zon, S. Robine, N.C. Andrews, The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1, 191–200 (2005)

    Article  CAS  PubMed  Google Scholar 

  117. Z. Zhang, F. Zhang, P. An, X. Guo, Y. Shen, Y. Tao, Q. Wu, Y. Zhang, Y. Yu, B. Ning, G. Nie, M.D. Knutson, G.J. Anderson, F. Wang, Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood 118, 1912–1922 (2011)

    Article  CAS  PubMed  Google Scholar 

  118. Z. Zhang, F. Zhang, X. Guo, P. An, Y. Tao, F. Wang, Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice. Hepatology 56, 961–971 (2012)

    Article  CAS  PubMed  Google Scholar 

  119. F. Wang, P.N. Paradkar, A.O. Custodio, D. McVey Ward, M.D. Fleming, D. Campagna, K.A. Roberts, V. Boyartchuk, W.F. Dietrich, J. Kaplan, N.C. Andrews, Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice. Nat. Genet. 39, 1025–1032 (2007)

    Article  CAS  PubMed  Google Scholar 

  120. H. Drakesmith, E. Nemeth, T. Ganz, Ironing out ferroportin. Cell Metab. 22, 777–787 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. C.B. Billesbølle, C.M. Azumaya, R.C. Kretsch, A.S. Powers, S. Gonen, S. Schneider, T. Arvedson, R.O. Dror, Y. Cheng, A. Manglik, Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature 586, 807–811 (2020)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  122. E. Nemeth, M.S. Tuttle, J. Powelson, M.B. Vaughn, A. Donovan, D.M. Ward, T. Ganz, J. Kaplan, Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 82274153 and 82173846), Young Talent Lifting Project of China Association of Chinese Medicine [No. CACM-(2021-QNRC2-A08)], Shanghai Rising-Star Program (No.22QA1409100), 2021 Shanghai Science and Technology Innovation Action Plan (No. 21S11902800), Three-year Action Plan for Shanghai TCM Development and Inheritance Program [ZY(2021-2023)-0401, ZY(2021-2023)-0208], Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (No. ZYYCXTD-D-202004), and Innovation team of high-level local universities in Shanghai: Strategic Innovation Team of TCM Chemical Biology.

The figures were created with BioRender software (BioRender.com).

Funding

This work was supported by National Natural Science Foundation of China (No. 82274153 and 82173846), Oriental Scholars of Shanghai Universities (TP2022081), Jiangxi Province Thousand Talents Program (jxsq2023102168), Young Talent Lifting Project of China Association of Chinese Medicine [No. CACM-(2021-QNRC2-A08)], Shanghai Rising-Star Program (No.22QA1409100), 2021 Shanghai Science and Technology Innovation Action Plan (No. 21S11902800), Three-year Action Plan for Shanghai TCM Development and Inheritance Program [ZY(2021–2023)-0401, ZY(2021–2023)-0208], Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (No. ZYYCXTD-D-202004), and Innovation team of high-level local universities in Shanghai: Strategic Innovation Team of TCM Chemical Biology.

Author information

Authors and Affiliations

Authors

Contributions

Yi-Chen Liu and Yi-Ting Gong: wrote the draft manuscript. Qing-Yan Sun, Bei Wang, Yue Yan, and Yi-Xu Chen: helped with analysis and literature review. Li-Jun Zhang, Wei-Dong Zhang, and Xin Luan: designed and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Li-Jun Zhang, Wei-Dong Zhang or Xin Luan.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that there are no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YC., Gong, YT., Sun, QY. et al. Ferritinophagy induced ferroptosis in the management of cancer. Cell Oncol. 47, 19–35 (2024). https://doi.org/10.1007/s13402-023-00858-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00858-x

Keywords

Navigation