Skip to main content

Advertisement

Log in

Integrative proteomics and n-glycoproteomics reveal the synergistic anti-tumor effects of aspirin- and gemcitabine-based chemotherapy on pancreatic cancer cells

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Objective and design

Pancreatic cancer is a highly malignant tumor that is well known for its poor prognosis. Based on glycosylation, we performed integrated quantitative N-glycoproteomics to investigate the synergistic anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells and explore the potential molecular mechanisms of chemotherapy in pancreatic cancer.

Methods and results

Two pancreatic cancer cell lines (PANC-1 and BxPC-3) were treated with gemcitabine, aspirin, and a combination (gemcitabine + aspirin). We found that the addition of aspirin enhanced the inhibitory effect of gemcitabine on the activity of PANC-1 and BxPC-3 cells. Quantitative N-glycoproteome, proteome, phosphorylation, and transcriptome data were obtained from integrated multi-omics analysis to evaluate the anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells. Mfuzz analysis of intact N-glycopeptide profiles revealed two consistent trends associated with the addition of aspirin, which showed a strong relationship between N-glycosylation and the synergistic effect of aspirin. Further analysis demonstrated that the dynamic regulation of sialylation and high-mannose glycoforms on ECM-related proteins (LAMP1, LAMP2, ITGA3, etc.) was a significant factor for the ability of aspirin to promote the anti-tumor activity of gemcitabine and the drug resistance of pancreatic cancer cells.

Conclusions

In-depth analysis of N-glycosylation-related processes and pathways in pancreatic cancer cells can provide new insight for future studies regarding pancreatic cancer therapeutic targets and drug resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used and/or analyzed during the present study are available.

Abbreviations

PDAC:

Pancreatic ductal adenocarcinoma

NSAIDs:

Non-steroidal anti-inflammatory drugs

COX-2:

Cyclooxygenase-2

NF-κB:

Nuclear factor kappa-B

TNF:

Tumor necrosis factor

ECM:

Extremely dense extracellular matrix

EMT:

Mesenchymal transition

TME:

Tumor microenvironment

TMT:

Tandem mass tag

KEGG:

Kyoto Encyclopedia of Genes and Genomes

GO:

Gene ontology

INGPs:

Intact N-glycopeptides

IC50:

Half maximal inhibitory concentration

GTs:

Glycosyltransferases

PTM:

Post-translational modification

PPI:

Protein-protein interaction

References

  1. R.L. Siegel, K.D. Miller, Cancer statistics, 2020. CA Cancer J Clin. 70, 7–30 (2020)

    Article  PubMed  Google Scholar 

  2. T. Kamisawa, L.D. Wood, T. Itoi, K. Takaori, Pancreatic cancer. Lancet. 388, 73–85 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. D.D. Von Hoff, T. Ervin, F.P. Arena, E.G. Chiorean, J. Infante, M. Moore, T. Seay, S.A. Tjulandin, W.W. Ma, M.N. Saleh, M. Harris, M. Reni, S. Dowden, D. Laheru, N. Bahary, R.K. Ramanathan, J. Tabernero, M. Hidalgo, D. Goldstein, E. Van Cutsem, X. Wei, J. Iglesias, M.F. Renschler, Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl. J. Med. 369, 1691–1703 (2013)

    Article  Google Scholar 

  4. A. Stathis, M.J. Moore, Advanced pancreatic carcinoma: current treatment and future challenges. Nat. Rev. Clin. Oncol. 7, 163–172 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. K.K.F. Tsoi, J.M.W. Ho, F.C.H. Chan, J.J.Y. Sung, Long-term use of low-dose aspirin for cancer prevention: a 10-year population cohort study in Hong Kong. Int. J. Cancer. 145, 267–273 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Y. Zhang, L. Liu, P. Fan, N. Bauer, J. Gladkich, E. Ryschich, A.V. Bazhin, N.A. Giese, O. Strobel, T. Hackert, U. Hinz, W. Gross, F. Fortunato, I. Herr, Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer. Oncotarget. 6, 9999–10015 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  7. K.P. Olive, M.A. Jacobetz, C.J. Davidson, A. Gopinathan, D. McIntyre, D. Honess, B. Madhu, M.A. Goldgraben, M.E. Caldwell, D. Allard, K.K. Frese, G. Denicola, C. Feig, C. Combs, S.P. Winter, H. Ireland-Zecchini, S. Reichelt, W.J. Howat, A. Chang, M. Dhara, L. Wang, F. Rückert, R. Grützmann, C. Pilarsky, K. Izeradjene, S.R. Hingorani, P. Huang, S.E. Davies, W. Plunkett, M. Egorin, R.H. Hruban, N. Whitebread, K. McGovern, J. Adams, C. Iacobuzio-Donahue, J. Griffiths, D.A. Tuveson, Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. M.V. Apte, J.S. Wilson, A. Lugea, S.J. Pandol, A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144, 1210–1219 (2013)

    Article  PubMed  Google Scholar 

  9. C.J. Tape, S. Ling, M. Dimitriadi, K.M. McMahon, J.D. Worboys, H.S. Leong, I.C. Norrie, C.J. Miller, G. Poulogiannis, D.A. Lauffenburger, C. Jørgensen, Oncogenic KRAS regulates Tumor Cell Signaling via Stromal Reciprocation. Cell 165, 910–920 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. Feig, A. Gopinathan, A. Neesse, D.S. Chan, N. Cook, D.A. Tuveson, The pancreas cancer microenvironment. Clin. Cancer Res. 18, 4266–4276 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Pan, Y. Tamura, R. Chen, D. May, M.W. McIntosh, T.A. Brentnall, Large-scale quantitative glycoproteomics analysis of site-specific glycosylation occupancy. Mol. Biosyst. 8, 2850–2856 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H.M. Park, M.P. Hwang, Y.W. Kim, K.J. Kim, J.M. Jin, Y.H. Kim, Y.H. Yang, K.H. Lee, Y.G. Kim, Mass spectrometry-based N-linked glycomic profiling as a means for tracking pancreatic cancer metastasis. Carbohydr. Res. 413, 5–11 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. P. Sharma, S. Hu-Lieskovan, J.A. Wargo, A. Ribas, Primary, adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 168, 707–723 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y. Binenbaum, S. Na’ara, Z. Gil, Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist. Updat. 23, 55–68 (2015)

    Article  PubMed  Google Scholar 

  15. P. Saftig, R. Puertollano, How lysosomes sense, integrate, and cope with stress. Trends Biochem. Sci. 46, 97–112 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. S. Sahni, J. Gillson, K.C. Park, S. Chiang, L.Y.W. Leck, P.J. Jansson, D.R. Richardson, NDRG1 suppresses basal and hypoxia-induced autophagy at both the initiation and degradation stages and sensitizes pancreatic cancer cells to lysosomal membrane permeabilization. Biochim. Biophys. Acta Gen. Subj. 1864, 129625 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. R. Raman, M. Venkataraman, S. Ramakrishnan, W. Lang, S. Raguram, R. Sasisekharan, Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16, 82r–90r (2006)

    Article  CAS  PubMed  Google Scholar 

  18. D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M.H. Tan, N.J. Nowak, R. Loor, H. Ochi, A.A. Sandberg, C. Lopez, J.W. Pickren, R. Berjian, H.O. Douglass, T.M. Chu, Characterization of a new primary human pancreatic tumor line. Cancer Invest. 4, 15–23 (1986)

    Article  CAS  PubMed  Google Scholar 

  20. E.L. Deer, J. González-Hernández, J.D. Coursen, J.E. Shea, J. Ngatia, C.L. Scaife, M.A. Firpo, S.J. Mulvihill, Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39, 425–435 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D.A. Drew, Y. Cao, A.T. Chan, Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat. Rev. Cancer. 16, 173–186 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D.L. Tao, Tassi Yunga, aspirin and antiplatelet treatments in cancer. Blood 137, 3201–3211 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Y. Zhang, L. Liu, P. Fan, N. Bauer, J. Gladkich, E. Ryschich, A.V. Bazhin, N.A. Giese, O. Strobel, T. Hackert, Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer. Oncotarget 6, 9999 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  24. X. Zhu, X. Shen, J. Qu, R.M. Straubinger, W.J. Jusko, Proteomic analysis of combined Gemcitabine and Birinapant in Pancreatic Cancer cells. Front. Pharmacol. 9, 84 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  25. T. Arumugam, V. Ramachandran, K.F. Fournier, H. Wang, L. Marquis, J.L. Abbruzzese, G.E. Gallick, C.D. Logsdon, D.J. McConkey, W. Choi, Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 69, 5820–5828 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Xu, S. Liu, X. Yang, S. Cao, Y. Zhou, Paracrine HGF promotes EMT and mediates the effects of PSC on chemoresistance by activating c-Met/PI3K/Akt signaling in pancreatic cancer in vitro. Life Sci. 263, 118523 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. H. Sumiyoshi, A. Matsushita, Y. Nakamura, Y. Matsuda, T. Ishiwata, Z. Naito, E. Uchida, Suppression of STAT5b in pancreatic cancer cells leads to attenuated gemcitabine chemoresistance, adhesion and invasion. Oncol. Rep. 35, 3216–3226 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Zhao, C. Chen, K. Chang, A. Karnad, J. Jagirdar, A.P. Kumar, J.W. Freeman, CD44 expression level and isoform contributes to pancreatic Cancer cell plasticity, invasiveness, and response to TherapyCD44 and Gemcitabine Resistance. Clin. Cancer Res. 22, 5592–5604 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C. Yang, M. Cao, Y. Liu, Y. He, Y. Du, G. Zhang, F. Gao, Inducible formation of leader cells driven by CD44 switching gives rise to collective invasion and metastases in luminal breast carcinomas. Oncogene 38, 7113–7132 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. C. Chen, S. Zhao, X. Zhao, L. Cao, A. Karnad, A.P. Kumar, J.W. Freeman, Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching. Cell. Death Dis. 13, 682 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Liu, Y. Zhang, J. Yang, X. Cui, Z. Zhou, H. Zhan, K. Ding, X. Tian, Z. Yang, K.A. Fung, B.H. Edil, R.G. Postier, M.S. Bronze, M.E. Fernandez-Zapico, M.P. Stemmler, T. Brabletz, Y.P. Li, C.W. Houchen, M. Li, ZIP4 increases expression of transcription factor ZEB1 to promote integrin α3β1 signaling and inhibit expression of the Gemcitabine Transporter ENT1 in Pancreatic Cancer cells. Gastroenterology 158, 679–692e671 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. F.M. Platt, A. d’Azzo, B.L. Davidson, E.F. Neufeld, C.J. Tifft, Lysosomal storage diseases. Nat. Rev. Dis. Primers. 4, 27 (2018)

    Article  PubMed  Google Scholar 

  33. X. Zhai, Y. El, Hiani, Getting lost in the cell–lysosomal entrapment of chemotherapeutics. Cancers 12, 3669 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A.M. Chamoun-Emanuelli, L.K. Bryan, N.D. Cohen, T.L. Tetrault, J.A. Szule, R. Barhoumi, Whitfield-Cargile, NSAIDs disrupt intestinal homeostasis by suppressing macroautophagy in intestinal epithelial cells. Sci. Rep. 9, 14534 (2019)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  35. F.Y. Ke, W.Y. Chen, M.C. Lin, Y.C. Hwang, K.T. Kuo, H.C. Wu, Novel monoclonal antibody against integrin α3 shows therapeutic potential for ovarian cancer. Cancer Sci. 111, 3478–3492 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. L. Shi, B. Liu, D.-. Shen, P. Yan, Y. Zhang, Y. Tian, L. Hou, G. Jiang, Y. Zhu, Y. Liang, A tumor-suppressive circular RNA mediates uncanonical integrin degradation by the proteasome in liver cancer. Sci. Adv. 7, eabe5043 (2021)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. A. Okato, Y. Goto, A. Kurozumi, M. Kato, S. Kojima, R. Matsushita, M. Yonemori, K. Miyamoto, T. Ichikawa, N. Seki, Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer. Int. J. Oncol. 49, 111–122 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Hu, J. Pan, P. Shah, M. Ao, S.N. Thomas, Y. Liu, L. Chen, M. Schnaubelt, D.J. Clark, H. Rodriguez, Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell. Rep. 33, 108276 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M.K. McKenna, A. Ozcan, D. Brenner, N. Watanabe, M. Legendre, D.G. Thomas, C. Ashwood, R.D. Cummings, C. Bonifant, D.M. Markovitz, Novel banana lectin CAR-T cells to target pancreatic tumors and tumor-associated stroma. J. Immunother Cancer 11, e005891 (2023)

  40. N. Taniguchi, Y. Kizuka, Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv. Cancer Res. 126, 11–51 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. E. RodrÍguez, S.T.T. Schetters, Y. van Kooyk, The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat. Rev. Immunol. 18, 204–211 (2018)

    Article  PubMed  Google Scholar 

  42. R. Gupta, F. Leon, C.M. Thompson, R. Nimmakayala, S. Karmakar, P. Nallasamy, S. Chugh, D.R. Prajapati, S. Rachagani, S. Kumar, Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis. Br. J. Cancer. 122, 1661–1672 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Li, Y. Lin, L. Aye, L. Dong, C. Zhang, F. Chen, Y. Liu, J. Fan, Q. Gao, H. Lu, An integrative pan-cancer analysis of the molecular and biological features of glycosyltransferases. Clin. Transl Med. 12, (2022)

  44. M.U. Rajagopal, S. Bansal, P. Kaur, S.K. Jain, T. Altadil, C.P. Hinzman, Y. Li, J. Moulton, B. Singh, S. Bansal, TGFβ drives metabolic perturbations during epithelial mesenchymal transition in pancreatic Cancer: TGFβ Induced EMT in PDAC. Cancers. 13, 6204 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D.A. Polasky, F. Yu, G.C. Teo, A.I. Nesvizhskii, Fast and comprehensive N-and O-glycoproteomics analysis with MSFragger-Glyco. Nat. methods. 17, 1125–1132 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Y. Liao, J. Wang, E.J. Jaehnig, Z. Shi, B. Zhang, WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–w205 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Program for Basic Research of China (grant numbers 2020YFC2002700, 2020YFE0202200); and Research Program of the State Key Laboratory of Proteomics [grant number SKLP-K201901].

Author information

Authors and Affiliations

Authors

Contributions

X.L. and R.K. contributed to the work equally and should be regarded as co-first authors.X.L : Conceptualization; Experimenter; Data curation; Formal analysis; Visualization; Roles/Writing original draft;R.K : Investigation; Roles/Writing original draft; Experimenter;W.H : Writing editing;L.Z : Formal analysis; J.C : Experimenter;X.Q : Project administration; Resources; Funding acquisition;L.Z : Project administrationW.Y : Project administration; Resources; Funding acquisition; Writing review & editing.

Corresponding authors

Correspondence to Lijiao Zhao or Wantao Ying.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Kong, R., Hou, W. et al. Integrative proteomics and n-glycoproteomics reveal the synergistic anti-tumor effects of aspirin- and gemcitabine-based chemotherapy on pancreatic cancer cells. Cell Oncol. 47, 141–156 (2024). https://doi.org/10.1007/s13402-023-00856-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00856-z

Keywords

Navigation