Skip to main content

Advertisement

Log in

Prognostic significance of collagen signatures at breast tumor boundary obtained by combining multiphoton imaging and imaging analysis

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Collagen features in breast tumor microenvironment is closely associated with the prognosis of patients. We aim to explore the prognostic significance of collagen features at breast tumor border by combining multiphoton imaging and imaging analysis.

Methods

We used multiphoton microscopy (MPM) to label-freely image human breast tumor samples and then constructed an automatic classification model based on deep learning to identify collagen signatures from multiphoton images. We recognized three kinds of collagen signatures at tumor boundary (CSTB I-III) in a small-scale, and furthermore obtained a CSTB score for each patient based on the combined CSTB I-III by using the ridge regression analysis. The prognostic performance of CSTB score is assessed by the area under the receiver operating characteristic curve (AUC), Cox proportional hazard regression analysis, as well as Kaplan-Meier survival analysis.

Results

As an independent prognostic factor, statistical results reveal that the prognostic performance of CSTB score is better than that of the clinical model combining three independent prognostic indicators, molecular subtype, tumor size, and lymph nodal metastasis (AUC, Training dataset: 0.773 vs. 0.749; External validation: 0.753 vs. 0.724; HR, Training dataset: 4.18 vs. 3.92; External validation: 4.98 vs. 4.16), and as an auxiliary indicator, it can greatly improve the accuracy of prognostic prediction. And furthermore, a nomogram combining the CSTB score with the clinical model is established for prognosis prediction and clinical decision making.

Conclusion

This standardized and automated imaging prognosticator may convince pathologists to adopt it as a prognostic factor, thereby customizing more effective treatment plans for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study were included in the article/Supplementary Materials. Further inquiry can be directed to the corresponding authors.

References

  1. H. Korkaya, S. Liu, M.S. Wicha, Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Invest. 121, 3804–3809 (2011). https://doi.org/10.1172/JCI57099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S.D. Soysal, A. Tzankov, S.E. Muenst, Role of the tumor microenvironment in breast cancer. Pathobiology. 82, 142–152 (2015). https://doi.org/10.1159/000430499

    Article  CAS  PubMed  Google Scholar 

  3. B. Ruffell, N.I. Affara, L.M. Coussens, Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012). https://doi.org/10.1016/j.it.2011.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer cell. 21, 309–322 (2012). https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  5. Z. Sun, S.H. Wang, R.C. Zhao, The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J. Hemato Oncol. 7, 1–10 (2014). https://doi.org/10.1186/1756-8722-7-14

    Article  CAS  Google Scholar 

  6. S.M. Kakkad, M. Solaiyappan, P. Argani, S. Sukumar, L.K. Jacobs, D. Leibfritz, Z. Bhujwalla, K. Glunde, Collagen I fiber density increases in lymph node positive breast cancers: pilot study. J. Biomed. Opt. 17, 116017 (2012). https://doi.org/10.1117/1.JBO.17.11.116017

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. C. Frantz, K.M. Stewart, V.M. Weaver, The extracellular matrix at a glance. J. Cell. Sci. 123, 4195–4200 (2010). https://doi.org/10.1242/jcs.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G. Charras, E. Sahai, Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell. Bio. 15, 813–824 (2014). https://doi.org/10.1038/nrm3897

    Article  CAS  Google Scholar 

  9. A. Ray, P.P. Provenzano, Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr. Opin. Cell. Biol. 72, 63–71 (2021). https://doi.org/10.1016/j.ceb.2021.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. L. Gole, J. Yeong, J.C.T. Lim, K.H. Ong, H. Han, A.A. Thike, Y.C. Poh, S. Yee, J. Iqbal, W. Hong, B. Lee, W. Yu, P.H. Tan, Quantitative stain-free imaging and digital profiling of collagen structure reveal diverse survival of triple negative breast cancer patients. Breast Cancer Res. 22, 1–13 (2020). https://doi.org/10.1186/s13058-020-01282-x

    Article  CAS  Google Scholar 

  11. R.A. Natal, J. Vassallo, G.R. Paiva, V.B. Pelegati, G.O. Barbosa, G.R. Mendonça, C. Bondarik, S.F. Derchain, H.F. Carvalho, C.S. Lima, C.L. Cesar, L.O. Sarian, Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumor Biology. 40, 1–12 (2018). https://doi.org/10.1177/1010428318770953

    Article  CAS  Google Scholar 

  12. M.W. Conklin, J.C. Eickhoff, K.M. Riching, C.A. Pehlke, K.W. Eliceiri, P.P. Provenzano, A. Friedl, P.J. Keely, Aligned collagen is a prognostic signature for survival in human breast carcinoma. AM. J. Pathol. 178, 1221–1232 (2011). https://doi.org/10.1016/j.ajpath.2010.11.076

    Article  PubMed  PubMed Central  Google Scholar 

  13. P.P. Provenzano, K.W. Eliceiri, J.M. Campbell, D.R. Inman, J.G. White, P.J. Keely, Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 1–15 (2016). https://doi.org/10.1186/1741-7015-4-38

    Article  CAS  Google Scholar 

  14. M.W. Conklin, R.E. Gangnon, B.L. Sprague, L.V. Gemert, J.M. Hampton, K.W. Eliceiri, J.S. Bredfeldt, Y. Liu, N. Surachaicharn, P.A. Newcomb, A. Friedl, P.J. Keely, Trentham-Dietz, Collagen alignment as a predictor of recurrence after ductal carcinoma in situ. Cancer Epidemiol. Biomarkers Prev. 27, 138–145 (2018). https://doi.org/10.1158/1055-9965.EPI-17-0720

    Article  CAS  PubMed  Google Scholar 

  15. G. Xi, W. Guo, D. Kang, J. Ma, F. Fu, L. Qiu, L. Zheng, J. He, N. Fang, J. Chen, J. Li, S. Zhuo, X. Liao, H. Tu, L. Li, Q. Zhang, C. Wang, S.A. Boppart, J. Chen, Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics. 11, 3229–3243 (2021). https://doi.org/10.7150%2Fthno.55921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. Li, Z. Han, L. Qiu, D. Kang, Z. Zhan, H. Tu, J. Chen, Evaluation of breast carcinoma regression after preoperative chemotherapy by label-free multiphoton imaging and image analysis. J. Biophotonics. 13, e201900216 (2020). https://doi.org/10.1002/jbio.201900216

    Article  PubMed  Google Scholar 

  17. B.E. Bejnordi, M. Veta, P.J.V. Diest, B.V. Ginneken, N. Karssemeijer, G. Litjens, A.W.M. Jeroen, Laak, CAMELYON16 Consortium, the, Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama 318, 2199–2210 (2017). https://doi.org/10.1001/jama.2017.14585

  18. B.E. Bejnordi, M. Mullooly, R.M. Pfeiffer, S. Fan, P.M. Vacek, D.L. Weaver, S. Herschorn, L.A. Brinton, B.V. Ginneken, N. Karssemeijer, A.H. Beck, G.L. Gierach, J.A.W.M. Laak, M.E. Sherman, Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Mod. Pathol. 31, 1502–1512 (2018). https://doi.org/10.1038/s41379-018-0073-z

    Article  PubMed Central  Google Scholar 

  19. G. Jiménez, D. Racoceanu, Deep learning for semantic segmentation vs. classification in computational pathology: application to mitosis analysis in breast cancer grading. Front. Bioeng. Biotech. 7, 145 (2019). https://doi.org/10.3389/fbioe.2019.00145

    Article  Google Scholar 

  20. H.D. Couture, L.A. Williams, J. Geradts, S.J. Nyante, E.N. Butler, J.S. Marron, C.M. Perou, M.A. Troester, M. Niethammer, Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. npj Breast Cancer. 4, 30 (2018). https://doi.org/10.1038/s41523-018-0079-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. J.N. Kather, J. Krisam, P. Charoentong, T. Luedde, E. Herpel, C. Weis, T. Gaiser, A. Marx, N.A. Valous, D. Ferber, L. Jansen, C.C. Reyes-Aldasoro, I. Zörnig, D. Jäger, H. Brenner, J. Chang-Claude, M. Hoffmeister, N. Halama, Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. Plos Med. 16 (2019). https://doi.org/10.1371/journal.pmed.1002730. e1002730

  22. N. Naik, A. Madani, A. Esteva, N.S. Keskar, M.F. Press, D. Ruderman, D.B. Agus, R. Socher, Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains. Nat. Commun. 11, 5727 (2020). https://doi.org/10.1038/s41467-020-19334-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016). https://doi.org/10.48550/arXiv.1512.03385

  24. J. Yang, J. Ju, L. Guo, B. Ji, S. Shi, Z. Yang, S. Gao, X. Yuan, G. Tian, Y. Liang, P. Yuan, Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Comput. Struct. Biotec. 20, 333–342 (2022). https://doi.org/10.1016/j.csbj.2021.12.028

    Article  CAS  Google Scholar 

  25. P. Courtiol, C. Maussion, M. Moarii, E. Pronier, S. Pilcer, M. Sefta, P. Manceron, S. Toldo, M. Zaslavskiy, N.L. Stang, N. Girard, O. Elemento, A.G. Nicholson, J. Blay, F. Galateau-Sallé, G. Wainrib, T. Clozel, Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25, 1519–1525 (2019). https://doi.org/10.1038/s41591-019-0583-3

    Article  CAS  PubMed  Google Scholar 

  26. A. Rasmusso, D. Zilenait, A. Nestarenkaite, R. Augulis, A. Laurinaviciene, V. Ostapenko, T. Poskus, A. Laurinavicius, Immunogradient indicators for antitumor response assessment by automated tumor-stroma interface zone detection. Am. J. Pathol. 190, 1309–1322 (2020). https://doi.org/10.1016/j.ajpath.2020.01.018

    Article  CAS  Google Scholar 

  27. E. Terradillos, C.L. Saratxaga, S. Mattana, R. Cicchi, F.S. Pavone, N. Andraka, B.J. Glover, N. Arbide, J. Velasco, M.C. Etxezarraga, A. Picon, Analysis on the characterization of multiphoton microscopy images for malignant neoplastic colon lesion detection under deep learning methods. J. Pathol. Inform. 12, 27 (2021). https://doi.org/10.4103/jpi.jpi_113_20

    Article  PubMed  PubMed Central  Google Scholar 

  28. H. Lin, C. Wei, G. Wang, H. Chen, L. Lin, M. Ni, J. Chen, S. Zhuo, Automated classification of hepatocellular carcinoma differentiation using multiphoton microscopy and deep learning. J. Biophotonics. 12, e201800435 (2019). https://doi.org/10.1002/jbio.201800435

    Article  CAS  PubMed  Google Scholar 

  29. Y. Ogawa, Y. Masugi, T. Abe, K. Yamazaki, A. Ueno, Y. Fujii-Nishimura, S. Hori, H. Yagi, Y. Abe, M. Kitago, M. Sakamoto, Three distinct stroma types in human pancreatic cancer identified by image analysis of fibroblast subpopulations and collagen. Clin. Cancer Res. 27, 107–119 (2021). https://doi.org/10.1158/1078-0432.CCR-20-2298

    Article  CAS  PubMed  Google Scholar 

  30. J. Adur, V.B. Pelegati, A.A. Thomaz, M.O. Baratti, L.A.L.A. Andrade, H.F. Carvalho, F. Bottcher-Luiz, C.L. Cesar, Second harmonic generation microscopy as a powerful diagnostic imaging modality for human ovarian cancer. J. Biophotonics. 7, 37–48 (2014). https://doi.org/10.1002/jbio.201200108

    Article  PubMed  Google Scholar 

  31. C. He, H. He, J. Chang, B. Chen, H. Ma, M.J. Booth, Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl. 10, 194 (2021). https://doi.org/10.1038/s41377-021-00639-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. B. Yang, J. Lesicko, M. Sharma, M. Hill, M.S. Sacks, J.W. Tunnell, Polarized light spatial frequency domain imaging for nondestructive quantification of soft tissue fibrous structures. Biomed. Opt. Express. 6, 1520–1533 (2015). https://doi.org/10.1364/BOE.6.001520

    Article  PubMed  PubMed Central  Google Scholar 

  33. S. Manhas, J. Vizet, S. Deby, J.C. Vanel, P. Boito, M. Verdier, A.D. Martino, D. Pagnoux, Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications. Opt. Express. 23, 3047–3054 (2015). https://doi.org/10.1364/OE.23.003047

    Article  ADS  CAS  PubMed  Google Scholar 

  34. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999). https://doi.org/10.1109/2944.796325

    Article  ADS  CAS  Google Scholar 

  35. J. Jagtap, S. Chandel, N. Das, J. Soni, S. Chatterjee, A. Pradhan, N. Ghosh, Quantitative Mueller matrix fluorescence spectroscopy for precancer detection. Opt. Lett. 39, 243–246 (2014). https://doi.org/10.1364/OL.39.000243

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of Chen lab for their suggestions and critical feedback.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 82171991. 82172800), Natural Science Foundation of Fujian Province (Nos. 2023J01082, 2023J011125, 2020J01839), Joint Funds for the Innovation of Science and Technology of Fujian Province (2019Y9101).

Author information

Authors and Affiliations

Authors

Contributions

Lianhuang Li, Lida Qiu and Jianxin Chen conceived the idea and supervised the study. Xingxin Huang, Xiahui Han, Liqin Zheng, Zhenlin Zhan, Shu Wang and Shunwu Xu performed multiphoton imaging. Fangmeng Fu, Wenhui Guo, Deyong Kang, Qingyuan Zhang, Jianli Ma and Chuan Wang were responsible for sample collection and preparation. Xingxin Huang, Lianhuang Li and Jianxin Chen conducted data analysis, and wrote or revised the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianli Ma, Lida Qiu, Jianxin Chen or Lianhuang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board at each center in China (Fujian Medical University Union Hospital and Harbin Medical University Cancer Hospital).

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xingxin Huang, Fangmeng Fu and Wenhui Guo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Fu, F., Guo, W. et al. Prognostic significance of collagen signatures at breast tumor boundary obtained by combining multiphoton imaging and imaging analysis. Cell Oncol. 47, 69–80 (2024). https://doi.org/10.1007/s13402-023-00851-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00851-4

Keywords

Navigation