Skip to main content

Advertisement

Log in

Immunosuppressive MFAP2+ cancer associated fibroblasts conferred unfavorable prognosis and therapeutic resistance in gastric cancer

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

To explore the predictive merit of MFAP2+ cancer associated fibroblasts (CAFs) infiltration for clinical outcomes and adjuvant chemotherapy or immunotherapy responsiveness in gastric cancer (GC).

Methods

In this study, several independent cohorts were included respectively to dissect the relationship of clinical outcomes, therapeutic responses and tumor microenvironment with different MFAP2+ CAFs infiltration. Drug sensitivity analysis was conducted to predict the relationship between MFAP2+ CAFs infiltration and targeted drug response. Kaplan–Meier curves and the log-rank test were used to compare clinical outcomes of patients with different MFAP2+ CAFs infiltration.

Results

High MFAP2+ CAFs infiltration yielded inferior prognosis in terms of overall survival, progress free survival and recurrence free survival in GC. Patients with low MFAP2+ CAFs infiltration were more likely to gain benefit from adjuvant therapy. Moreover, low MFAP2+ CAFs infiltration could predict a promising response to immunotherapy in GC patients. MFAP2+ CAFs with immunosuppressive features were highly relevant to immune evasive contexture characterized by the dysfunction of CD8+ T cells. We found that MFAP2+ CAFs communicated with T cells, B cells and Macrophages through releasing macrophage migration inhibitor factor (MIF), which further suggested that MFAP2+ CAFs might promote therapeutic resistance through regulating T cells dysfunction and M2 macrophages polarization.

Conclusion

Immunosuppressive MFAP2+ CAFs constructed an immune evasive tumor microenvironment characterized by incapacitated immune effector cells, consequently predicting inferior clinical outcomes and response on adjuvant therapy and immunotherapy in patients with GC. The potential of immunosuppressive MFAP2+ CAFs as a therapeutic target for GC deserved thoroughly exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study. These data could be found here: UCSC XENA (https://xenabrowser.net/datapages/), GEO (https://www.ncbi.nlm.nih.gov/geo/), Tumor Immune Dysfunction and Exclusion database (http://tide.dfci.harvard.edu) and The Genomics of Drug Sensitivity in Cancer database (https://www.cancerrxgene.org/). Other raw data supporting the conclusions of this article will be available from the corresponding author upon reasonable request.

Abbreviations

MFAP2 :

Microfibril Associated Protein 2

GC :

Gastric cancer

CAFs :

Cancer associated fibroblasts

ICB :

Immune checkpoint blockade

myCAFs :

Myofibroblastic cancer associated fibroblasts

iCAFs :

Inflammatory cancer associated fibroblasts

TCGA :

The Cancer Genome Atlas

FPKM :

Fragments per kilobase million

TPM :

Transcripts per kilobase millions

ACRG :

Asian Cancer Research Group

SMC :

Samsung Medical Center

TIDE :

Tumor Immune Dysfunction and Exclusion

SD :

Stable disease

PD :

Progressive disease

PR :

Partial response

CR :

Complete response

ScRNA-seq :

Single-cell RNA sequencing

GDSC :

Genomics of Drug Sensitivity in Cancer

IC50 :

Half-maximal inhibitory concentration

ROC :

Receiver operating characteristic

AUC :

The area under the curve

MSI :

Microsatellite instability

GS :

Genome stable

EBV :

Epstein-Barr virus

CIN :

Chromosomal instability

EMT :

Epithelial mesenchymal transformation

Pan-F TBRS :

Panfibroblast TGFβ response characteristics

OS :

Overall survival

RFS :

Recurrence free survival

PFS :

Progress free survival

GEO :

Gene Expression Omnibus

GSEA :

Gene set enrichment analysis

MIF :

Macrophage migration inhibitor factor

TRG :

Tumor regression grade

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, CA Cancer J Clin 71, 209–249 (2021). https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. S.S. Joshi, B.D. Badgwell, CA Cancer J Clin 71, 264–279 (2021). https://doi.org/10.3322/caac.21657

    Article  PubMed  PubMed Central  Google Scholar 

  3. J.A. Ajani, T.A. D’Amico, D.J. Bentrem, J. Chao, D. Cooke, C. Corvera, P. Das, P.C. Enzinger, T. Enzler, P. Fanta, F. Farjah, H. Gerdes, M.K. Gibson, S. Hochwald, W.L. Hofstetter, D.H. Ilson, R.N. Keswani, S. Kim, L.R. Kleinberg, S.J. Klempner, J. Lacy, Q.P. Ly, K.A. Matkowskyj, M. McNamara, M.F. Mulcahy, D. Outlaw, H. Park, K.A. Perry, J. Pimiento, G.A. Poultsides, S. Reznik, R.E. Roses, V.E. Strong, S. Su, H.L. Wang, G. Wiesner, C.G. Willett, D. Yakoub, H. Yoon, N. McMillian, L.A. Pluchino, J Natl Compr Canc Netw 20, 167–192 (2022). https://doi.org/10.6004/jnccn.2022.0008

    Article  CAS  PubMed  Google Scholar 

  4. Y. Zhang, Z. Zhang, Cell Mol Immunol 17, 807–821 (2020). https://doi.org/10.1038/s41423-020-0488-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D.C. Hinshaw, L.A. Shevde, Cancer Res 79, 4557–4566 (2019). https://doi.org/10.1158/0008-5472.CAN-18-3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Nurmik, P. Ullmann, F. Rodriguez, S. Haan, E. Letellier, Int J Cancer 146, 895–905 (2020). https://doi.org/10.1002/ijc.32193

    Article  CAS  PubMed  Google Scholar 

  7. M.Q. Gao, B.G. Kim, S. Kang, Y.P. Choi, H. Park, K.S. Kang, N.H. Cho, J Cell Sci 123, 3507–3514 (2010). https://doi.org/10.1242/jcs.072900

    Article  CAS  PubMed  Google Scholar 

  8. S. Su, J. Chen, H. Yao, J. Liu, S. Yu, L. Lao, M. Wang, M. Luo, Y. Xing, F. Chen, D. Huang, J. Zhao, L. Yang, D. Liao, F. Su, M. Li, Q. Liu, E. Song, Cell 172, 841-856 e816 (2018). https://doi.org/10.1016/j.cell.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  9. S. Zhu, L. Ye, S. Bennett, H. Xu, D. He, J. Xu, J Cell Physiol 236, 41–48 (2021). https://doi.org/10.1002/jcp.29893

    Article  CAS  PubMed  Google Scholar 

  10. F. Segade, N. Suganuma, J.C. Mychaleckyj, R.P. Mecham, Int J Biochem Cell Biol 39, 2303–2313 (2007). https://doi.org/10.1016/j.biocel.2007.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J.K. Wang, W.J. Wang, H.Y. Cai, B.B. Du, P. Mai, L.J. Zhang, W. Ma, Y.G. Hu, S.F. Feng, G.Y. Miao, Onco Targets Ther 11, 4001–4017 (2018). https://doi.org/10.2147/OTT.S160831

    Article  PubMed  PubMed Central  Google Scholar 

  12. L.W. Yao, L.L. Wu, L.H. Zhang, W. Zhou, L. Wu, K. He, J.C. Ren, Y.C. Deng, D.M. Yang, J. Wang, G.G. Mu, M. Xu, J. Zhou, G.A. Xiang, Q.S. Ding, Y.N. Yang, H.G. Yu, Oncogenesis 9, 17 (2020). https://doi.org/10.1038/s41389-020-0198-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. X. Zhu, Y. Cheng, F. Wu, H. Sun, W. Zheng, W. Jiang, J. Shi, S. Ma, H. Cao, Technol Cancer Res Treat 19, 1533033820977524 (2020). https://doi.org/10.1177/1533033820977524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. I. Gomez de Segura, P. Ahechu, J. Gomez-Ambrosi, A. Rodriguez, B. Ramirez, S. Becerril, X. Unamuno, A. Mentxaka, J. Baixauli, V. Valenti, R. Moncada, C. Silva, G. Fruhbeck, V. Catalan. Int J Mol Sci 22, 8485 (2021). https://doi.org/10.3390/ijms22168485

  15. Z.N. Liu, Y.K. Wang, L. Zhang, Y.N. Jia, S. Fei, X.J. Ying, Y. Zhang, S.X. Li, Y. Sun, Z.Y. Li, J.F. Ji, World J Gastrointest Oncol 13, 2161–2179 (2021). https://doi.org/10.4251/wjgo.v13.i12.2161

    Article  PubMed  PubMed Central  Google Scholar 

  16. R. Cristescu, J. Lee, M. Nebozhyn, K.M. Kim, J.C. Ting, S.S. Wong, J. Liu, Y.G. Yue, J. Wang, K. Yu, X.S. Ye, I.G. Do, S. Liu, L. Gong, J. Fu, J.G. Jin, M.G. Choi, T.S. Sohn, J.H. Lee, J.M. Bae, S.T. Kim, S.H. Park, I. Sohn, S.H. Jung, P. Tan, R. Chen, J. Hardwick, W.K. Kang, M. Ayers, D. Hongyue, C. Reinhard, A. Loboda, S. Kim, A. Aggarwal, Nat Med 21, 449–456 (2015). https://doi.org/10.1038/nm.3850

    Article  CAS  PubMed  Google Scholar 

  17. J. Lee, I. Sohn, I.G. Do, K.M. Kim, S.H. Park, J.O. Park, Y.S. Park, H.Y. Lim, T.S. Sohn, J.M. Bae, M.G. Choi, D.H. Lim, B.H. Min, J.H. Lee, P.L. Rhee, J.J. Kim, D.I. Choi, I.B. Tan, K. Das, P. Tan, S.H. Jung, W.K. Kang, S. Kim, PLoS One 9, e90133 (2014). https://doi.org/10.1371/journal.pone.0090133

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. S.C. Oh, B.H. Sohn, J.H. Cheong, S.B. Kim, J.E. Lee, K.C. Park, S.H. Lee, J.L. Park, Y.Y. Park, H.S. Lee, H.J. Jang, E.S. Park, S.C. Kim, J. Heo, I.S. Chu, Y.J. Jang, Y.J. Mok, W. Jung, B.H. Kim, A. Kim, J.Y. Cho, J.Y. Lim, Y. Hayashi, S. Song, E. Elimova, J.S. Estralla, J.H. Lee, M.S. Bhutani, Y. Lu, W. Liu, J. Lee, W.K. Kang, S. Kim, S.H. Noh, G.B. Mills, S.Y. Kim, J.A. Ajani, J.S. Lee, Nat Commun 9, 1777 (2018). https://doi.org/10.1038/s41467-018-04179-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. S.T. Kim, R. Cristescu, A.J. Bass, K.M. Kim, J.I. Odegaard, K. Kim, X.Q. Liu, X. Sher, H. Jung, M. Lee, S. Lee, S.H. Park, J.O. Park, Y.S. Park, H.Y. Lim, H. Lee, M. Choi, A. Talasaz, P.S. Kang, J. Cheng, A. Loboda, J. Lee, W.K. Kang, Nat Med 24, 1449–1458 (2018). https://doi.org/10.1038/s41591-018-0101-z

    Article  CAS  PubMed  Google Scholar 

  20. T.N. Gide, C. Quek, A.M. Menzies, A.T. Tasker, P. Shang, J. Holst, J. Madore, S.Y. Lim, R. Velickovic, M. Wongchenko, Y. Yan, S. Lo, M.S. Carlino, A. Guminski, R.P.M. Saw, A. Pang, H.M. McGuire, U. Palendira, J.F. Thompson, H. Rizos, I.P.D. Silva, M. Batten, R.A. Scolyer, G.V. Long, J.S. Wilmott, Cancer Cell 35, 238-255 e236 (2019). https://doi.org/10.1016/j.ccell.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  21. D. Maeser, R.F. Gruener and R.S. Huang, Brief Bioinform 22, bbab260 (2021). https://doi.org/10.1093/bib/bbab260

  22. R. Kanzaki, K. Pietras, Cancer Sci 111, 2708–2717 (2020). https://doi.org/10.1111/cas.14537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O. Serra, M. Galan, M.M. Ginesta, M. Calvo, N. Sala, R. Salazar, Cancer Treat Rev 77, 29–34 (2019). https://doi.org/10.1016/j.ctrv.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  24. G. Knight, C.C. Earle, R. Cosby, N. Coburn, Y. Youssef, R. Malthaner, R.K. Wong, G. Gastrointestinal Cancer Disease Site, Gastric Cancer, Gastric Cancer 16, 28–40 (2013). https://doi.org/10.1007/s10120-012-0148-3

    Article  CAS  PubMed  Google Scholar 

  25. G. Group, X. Paoletti, K. Oba, T. Burzykowski, S. Michiels, Y. Ohashi, J.P. Pignon, P. Rougier, J. Sakamoto, D. Sargent, M. Sasako, E. Van Cutsem, M. Buyse, JAMA 303(1729), 1737 (2010). https://doi.org/10.1001/jama.2010.534

    Article  Google Scholar 

  26. R. Kalluri, Nat Rev Cancer 16, 582–598 (2016). https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  27. Y. Shi, L. Du, L. Lin, Y. Wang, Nat Rev Drug Discov 16, 35–52 (2017). https://doi.org/10.1038/nrd.2016.193

    Article  CAS  PubMed  Google Scholar 

  28. A. Cats, E.P.M. Jansen, N.C.T. van Grieken, K. Sikorska, P. Lind, M. Nordsmark, E. Meershoek-Klein Kranenbarg, H. Boot, A.K. Trip, H.A.M. Swellengrebel, H.W.M. van Laarhoven, H. Putter, J.W. van Sandick, M.I. van Berge Henegouwen, H.H. Hartgrink, H. van Tinteren, C.J.H. van de Velde, M. Verheij, Lancet Oncol 19, 616–628 (2018). https://doi.org/10.1016/s1470-2045(18)30132-3

    Article  CAS  PubMed  Google Scholar 

  29. S.H. Park, T.S. Sohn, J. Lee, D.H. Lim, M.E. Hong, K.M. Kim, I. Sohn, S.H. Jung, M.G. Choi, J.H. Lee, J.M. Bae, S. Kim, S.T. Kim, J.O. Park, Y.S. Park, H.Y. Lim, W.K. Kang, J Clin Oncol 33, 3130–3136 (2015). https://doi.org/10.1200/JCO.2014.58.3930

    Article  CAS  PubMed  Google Scholar 

  30. C.D. Coldren, B.A. Helfrich, S.E. Witta, M. Sugita, R. Lapadat, C. Zeng, A. Baron, W.A. Franklin, F.R. Hirsch, M.W. Geraci, P.A. Bunn Jr., Mol Cancer Res 4, 521–528 (2006). https://doi.org/10.1158/1541-7786.MCR-06-0095

    Article  CAS  PubMed  Google Scholar 

  31. J.S. O’Donnell, M.W.L. Teng, M.J. Smyth, Nat Rev Clin Oncol 16, 151–167 (2019). https://doi.org/10.1038/s41571-018-0142-8

    Article  CAS  PubMed  Google Scholar 

  32. R. Shi, Z. Zhang, A. Zhu, X. Xiong, J. Zhang, J. Xu, M.S. Sy, C. Li, Int J Cancer 151, 665–683 (2022). https://doi.org/10.1002/ijc.33985

    Article  CAS  PubMed  Google Scholar 

  33. P. Jiang, S. Gu, D. Pan, J. Fu, A. Sahu, X. Hu, Z. Li, N. Traugh, X. Bu, B. Li, J. Liu, G.J. Freeman, M.A. Brown, K.W. Wucherpfennig, X.S. Liu, Nat Med 24, 1550–1558 (2018). https://doi.org/10.1038/s41591-018-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Q. Zhou, X. Yan, J. Gershan, R.J. Orentas, B.D. Johnson, J Immunol 181, 1877–1886 (2008). https://doi.org/10.4049/jimmunol.181.3.1877

    Article  CAS  PubMed  Google Scholar 

  35. M. Mittelbronn, M. Platten, P. Zeiner, Y. Dombrowski, B. Frank, C. Zachskorn, P.N. Harter, M. Weller, J. Wischhusen, Acta Neuropathol 122, 353–365 (2011). https://doi.org/10.1007/s00401-011-0858-3

    Article  CAS  PubMed  Google Scholar 

  36. K.D. Simpson, D.J. Templeton, J.V. Cross, J Immunol 189, 5533–5540 (2012). https://doi.org/10.4049/jimmunol.1201161

    Article  CAS  PubMed  Google Scholar 

  37. T. Vierbuchen, A. Ostermeier, Z.P. Pang, Y. Kokubu, T.C. Sudhof, M. Wernig, Nature 463, 1035–1041 (2010). https://doi.org/10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. E. Sahai, I. Astsaturov, E. Cukierman, D.G. DeNardo, M. Egeblad, R.M. Evans, D. Fearon, F.R. Greten, S.R. Hingorani, T. Hunter, R.O. Hynes, R.K. Jain, T. Janowitz, C. Jorgensen, A.C. Kimmelman, M.G. Kolonin, R.G. Maki, R.S. Powers, E. Pure, D.C. Ramirez, R. Scherz-Shouval, M.H. Sherman, S. Stewart, T.D. Tlsty, D.A. Tuveson, F.M. Watt, V. Weaver, A.T. Weeraratna, Z. Werb, Nat Rev Cancer 20, 174–186 (2020). https://doi.org/10.1038/s41568-019-0238-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G. Biffi, D.A. Tuveson, Physiol Rev 101, 147–176 (2021). https://doi.org/10.1152/physrev.00048.2019

    Article  CAS  PubMed  Google Scholar 

  40. S. Hu, H. Lu, W. Xie, D. Wang, Z. Shan, X. Xing, X.M. Wang, J. Fang, W. Dong, W. Dai, J. Guo, Y. Zhang, S. Wen, X.Y. Guo, Q. Chen, F. Bai, Z. Wang, J Clin Invest (2022). https://doi.org/10.1172/JCI157649

    Article  PubMed  PubMed Central  Google Scholar 

  41. X. Li, Z. Sun, G. Peng, Y. Xiao, J. Guo, B. Wu, X. Li, W. Zhou, J. Li, Z. Li, C. Bai, L. Zhao, Q. Han, R.C. Zhao, X. Wang, Theranostics 12, 620–638 (2022). https://doi.org/10.7150/thno.60540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. X.L. Zhang, L.P. Hu, Q. Yang, W.T. Qin, X. Wang, C.J. Xu, G.A. Tian, X.M. Yang, L.L. Yao, L. Zhu, H.Z. Nie, Q. Li, Q. Xu, Z.G. Zhang, Y.L. Zhang, J. Li, Y.H. Wang, S.H. Jiang, Oncogene 40, 3959–3973 (2021). https://doi.org/10.1038/s41388-021-01827-0

    Article  CAS  PubMed  Google Scholar 

  43. J. Lee, J. Song, E.S. Kwon, S. Jo, M.K. Kang, Y.J. Kim, Y. Hwang, H. Bae, T.H. Kang, S. Chang, H.J. Cho, S.C. Kim, S. Kim, S.S. Koh, Exp Mol Med 48, e261 (2016). https://doi.org/10.1038/emm.2016.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Qin, J.H. Zheng, Z.H. Xia, J. Qian, C.L. Deng, S.L. Yang, Biomed Pharmacother 113, 108594 (2019). https://doi.org/10.1016/j.biopha.2019.01.055

    Article  CAS  PubMed  Google Scholar 

  45. L. Fang, Y. Che, C. Zhang, J. Huang, Y. Lei, Z. Lu, N. Sun, J. He, Cell Death Discov 7, 32 (2021). https://doi.org/10.1038/s41420-021-00410-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Ciavarella, A. Laurenzana, S. De Summa, B. Pilato, A. Chilla, R. Lacalamita, C. Minoia, F. Margheri, A. Iacobazzi, A. Rana, F. Merchionne, G. Fibbi, M. Del Rosso, A. Guarini, S. Tommasi, S. Serrati, BMC Cancer 17, 215 (2017). https://doi.org/10.1186/s12885-017-3183-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. G. Friedman, O. Levi-Galibov, E. David, C. Bornstein, A. Giladi, M. Dadiani, A. Mayo, C. Halperin, M. Pevsner-Fischer, H. Lavon, S. Mayer, R. Nevo, Y. Stein, N. Balint-Lahat, I. Barshack, H.R. Ali, C. Caldas, E. Nili-Gal-Yam, U. Alon, I. Amit, R. Scherz-Shouval, Nat Cancer 1, 692–708 (2020). https://doi.org/10.1038/s43018-020-0082-y

    Article  CAS  PubMed  Google Scholar 

  48. T. Sakai, K. Aokage, S. Neri, H. Nakamura, S. Nomura, K. Tane, T. Miyoshi, M. Sugano, M. Kojima, S. Fujii, T. Kuwata, A. Ochiai, A. Iyoda, M. Tsuboi, G. Ishii, Lung Cancer 126, 64–71 (2018). https://doi.org/10.1016/j.lungcan.2018.10.021

    Article  PubMed  Google Scholar 

  49. J. Suzuki, K. Aokage, S. Neri, T. Sakai, H. Hashimoto, Y. Su, S. Yamazaki, H. Nakamura, K. Tane, T. Miyoshi, M. Sugano, M. Kojima, S. Fujii, T. Kuwata, A. Ochiai, M. Tsuboi, G. Ishii, Lung Cancer 153, 1–10 (2021). https://doi.org/10.1016/j.lungcan.2020.12.020

    Article  CAS  PubMed  Google Scholar 

  50. H. Su, N. Na, X. Zhang, Y. Zhao, Inflamm Res 66, 209–216 (2017). https://doi.org/10.1007/s00011-016-0995-1

    Article  CAS  PubMed  Google Scholar 

  51. M. de Barbosa Souza Rizzo, M. de Brasilino Carvalho, E.J. Kim, B.E. Rendon, J.T. Noe, A. Darlene Wise, R.A. Mitchell, QJM 111(769), 778 (2018). https://doi.org/10.1093/qjmed/hcy163

    Article  CAS  Google Scholar 

  52. F. Garrido, N. Aptsiauri, E.M. Doorduijn, A.M. Garcia Lora, T. van Hall, Curr Opin Immunol 39, 44–51 (2016). https://doi.org/10.1016/j.coi.2015.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was sponsored by Natural Science Foundation of Shanghai (21ZR1414600), Shanghai Pujiang Program (2019PJD007), Shanghai Sailing Program (20YF1409200) and National Natural Science Foundation of China (82002545). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LXW and LCC conceived and designed this study. WRY, SJQ, LXJ, HSY analyzed the data and drafted the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Chenchen Liu or Xiaowen Liu.

Ethics declarations

Ethics approval and consent to participate

The studies involving human participants were reviewed and approved by Clinical Research Ethics Committee of Fudan University Shanghai Cancer Center, and the patients/participants offered their written informed consent to participate in this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1 Supplementary Figure 1 identification of relationship between MFAP2 and CAFs and prognostic merit of CAFs and MFAP2+ CAFs in GC. (A) The correlation of MFAP2 and CAFs via TIDE, XCELL, EPIC algorithms. (B) Kaplan–Meier curves of OS and RFS of low MFAP2+ CAFs and high MFAP2+ CAFs group stratified in GSE26942 cohort. (C) Kaplan–Meier curves of OS and PFS of low CAFs and high CAFs group stratified in TCGA cohort. (D) Kaplan–Meier curves of OS and PFS of low CAFs and high CAFs group stratified in ACRG cohort.

(PNG 533 kb)

High Resolution Image (TIF 2929 kb)

ESM 2 Supplementary Figure 2 Prognostic merit of type I collagen and regulatory factors of MFAP2+ CAFs in the tumor microenvironment. (A) Kaplan–Meier curves of OS and PFS of low type I collagen content group and high type I collagen content group stratified in TCGA cohort. (B) Different regulatory factors of MFAP2+ CAFs and MFAP2- CAFs in the tumor microenvironment (*P<0.05; **P<0.01; ***P<0.001, Wilcoxon test).

(PNG 148 kb)

High Resolution Image (TIF 991 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Song, J., Liu, X. et al. Immunosuppressive MFAP2+ cancer associated fibroblasts conferred unfavorable prognosis and therapeutic resistance in gastric cancer. Cell Oncol. 47, 55–68 (2024). https://doi.org/10.1007/s13402-023-00849-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00849-y

Keywords

Navigation