Skip to main content

Advertisement

Log in

TRIM17-mediated ubiquitination and degradation of RBM38 promotes cisplatin resistance in non-small cell lung cancer

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Cisplatin (CDDP)-based chemotherapy is commonly used to treat advanced non-small cell lung cancer (NSCLC). However, the efficacy is limited by the development of drug resistance. Tripartite motif (TRIM) proteins typically have E3 ubiquitin ligase activities and modulate protein stability. In the present study, we screened for chemosensitivity-regulating TRIM proteins using CDDP-resistant NSCLC cell lines. We show that TRIM17 is upregulated in CDDP-resistant NSCLC cells and tumors compared to CDDP-sensitive counterparts. NSCLC patients with high TRIM17 expression in tumors have shorter progression-free survival than those with low TRIM17 expression after CDDP chemotherapy. Knockdown of TRIM17 increases the sensitivity of NSCLC cells to CDDP both in vitro and in vivo. In contrast, overexpression of TRIM17 promotes CDDP resistance in NSCLC cells. TRIM17-mediated CDDP resistance is associated with attenuation of reactive oxygen species (ROS) production and DNA damage. Mechanistically, TRIM17 interacts with RBM38 and promotes K48-linked ubiquitination and degradation of RBM38. TRIM17-induced CDDP resistance is remarkably reversed by RBM38. Additionally, RBM38 enhances CDDP-induced production of ROS. In conclusion, TRIM17 upregulation drives CDDP resistance in NSCLC largely by promoting RBM38 ubiquitination and degradation. Targeting TRIM17 may represent a promising strategy for improving CDDP-based chemotherapy in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author (lihongmin@med.uestc.edu.cn) upon reasonable request.

References

  1. S.P. Smith, A.J. Bograd, G. Levy, S.C. Chang, A.S. Farivar, R.W. Aye, B.E. Louie, E. Vallières, Surgical management of non-small cell lung cancer invading the fissure: Less is more? Ann. Thorac. Surg. 111, 231–236 (2021)

    Article  PubMed  Google Scholar 

  2. A. Passaro, I. Attili, F. de Marinis, CheckMate 9LA: broadening treatment options for patients with non-small-cell lung cancer. Lancet Oncol. 22, 157–159 (2021)

    Article  PubMed  Google Scholar 

  3. Y. Liu, J. Fan, T. Xu, N. Ahmadinejad, K. Hess, S.H. Lin, J. Zhang, X. Liu, L. Liu, B. Ning, Z. Liao, T.Y. Hu, Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non-small cell lung cancer after concurrent chemoradiation. Sci. Adv. 6, eaaz6162 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Yadav, P.S. Malik, S. Khurana, D. Jain, S. Vishnubhatla, M. Yadav, S. Pathy, A. Mohan, L. Kumar, An open-label randomized controlled trial comparing the efficacy and safety of pemetrexed-carboplatin versus (Weekly) paclitaxel-carboplatin as first-line chemotherapy in advanced non-squamous non-small cell lung cancer. Oncology 99, 389–396 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. R. Chen, R. Manochakian, L. James, A.G. Azzouqa, H. Shi, Y. Zhang, Y. Zhao, K. Zhou, Y. Lou, Emerging therapeutic agents for advanced non-small cell lung cancer. J. Hematol. Oncol. 13, 58 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  6. D.A. Fennell, Y. Summers, J. Cadranel, T. Benepal, D.C. Christoph, R. Lal, M. Das, F. Maxwell, C. Visseren-Grul, D. Ferry, Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev. 44, 42–50 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. N.V. Volkova, B. Meier, V. González-Huici, S. Bertolini, S. Gonzalez, H. Vöhringer, F. Abascal, I. Martincorena, P.J. Campbell, A. Gartner, M. Gerstung, Mutational signatures are jointly shaped by DNA damage and repair. Nat. Commun. 11, 2169 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Kleih, K. Böpple, M. Dong, A. Gaißler, S. Heine, M.A. Olayioye, W.E. Aulitzky, F. Essmann, Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10, 851 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  9. L. Galluzzi, I. Vitale, J. Michels, C. Brenner, G. Szabadkai, A. Harel-Bellan, M. Castedo, G. Kroemer, Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 5, e1257 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A.M. Jaworska, N.A. Wlodarczyk, A. Mackiewicz, P. Czerwinska, The role of TRIM family proteins in the regulation of cancer stem cell self-renewal. Stem Cells. 38, 165–173 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. K. Kato, S. Ahmad, Z. Zhu, J.M. Young, X. Mu, S. Park, H.S. Malik, S. Hur, Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Mol. Cell. 81, 599–613 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. J. Ji, K. Ding, T. Luo, X. Zhang, A. Chen, D. Zhang, G. Li, F. Thorsen, B. Huang, X. Li, J. Wang, TRIM22 activates NF-κB signaling in glioblastoma by accelerating the degradation of IκBα. Cell Death Differ. 28, 367–381 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. J. Hu, X. Ding, S. Tian, Y. Chu, Z. Liu, Y. Li, X. Li, G. Wang, L. Wang, Z. Wang, TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis. 12, 391 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Sun, J. Yan, H.Y. Qiao, F.Y. Zhao, C. Li, J.Y. Jiang, B.Q. Liu, X.N. Meng, H.Q. Wang, Loss of TRIM29 suppresses cancer stem cell-like characteristics of PDACs via accelerating ISG15 degradation. Oncogene 39, 546–559 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. X. Pan, Y. Chen, Y. Shen, J. Tantai, Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7. Cell Death Dis. 10, 429 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y. Zhang, H. Du, Y. Li, Y. Yuan, B. Chen, S. Sun, Elevated TRIM23 expression predicts cisplatin resistance in lung adenocarcinoma. Cancer Sci. 111, 637–646 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M.P. Barr, S.G. Gray, A.C. Hoffmann, R.A. Hilger, J. Thomale, J.D. O’Flaherty, D.A. Fennell, D. Richard, J.J. O’Leary, K.J. O’Byrne, Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS ONE 8, e54193 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Cheng, F. Mo, Q. Li, X. Han, H. Shi, S. Chen, Y. Wei, X. Wei, Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol. Cancer. 20, 62 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y.R. Lee, M. Chen, J.D. Lee, J. Zhang, S.Y. Lin, T.M. Fu, H. Chen, T. Ishikawa, S.Y. Chiang, J. Katon, Y. Zhang, Y.V. Shulga, A.C. Bester, J. Fung, E. Monteleone, L. Wan, C. Shen, C.H. Hsu, A. Papa, J.G. Clohessy, J. Teruya-Feldstein, S. Jain, H. Wu, L. Matesic, R.H. Chen, W. Wei, P.P. Pandolfi, Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 364(6441), eaau0159 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Wu, P.H. Clingen, V.J. Spanswick, M. Mellinas-Gomez, T. Meyer, I. Puzanov, D. Jodrell, D. Hochhauser, J.A. Hartley, gamma-H2AX foci formation as a pharmacodynamic marker of DNA damage produced by DNA cross-linking agents: results from 2 phase I clinical trials of SJG-136 (SG2000). Clin. Cancer Res. 19, 721–730 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. J. Liu, Y. Peng, L. Shi, L. Wan, H. Inuzuka, J. Long, J. Guo, J. Zhang, M. Yuan, S. Zhang, X. Wang, J. Gao, X. Dai, S. Furumoto, L. Jia, P.P. Pandolfi, J.M. Asara, W.G. Kaelin Jr., J. Liu, W. Wei, Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Res. 31, 80–93 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. F. Ciccarone, P. De Falco, M.R. Ciriolo, Aconitase 2 sensitizes MCF-7 cells to cisplatin eliciting p53-mediated apoptosis in a ROS-dependent manner. Biochem. Pharmacol. 180, 114202 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. B. Guan, G. Li, B. Wan, X. Guo, D. Huang, J. Ma, P. Gong, J. Guo, Y. Bu, RNA-binding protein RBM38 inhibits colorectal cancer progression by partly and competitively binding to PTEN 3’UTR with miR-92a-3p. Environ. Toxicol. 36, 2436–2447 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. J. Ye, R. Liang, T. Bai, Y. Lin, R. Mai, M. Wei, X. Ye, L. Li, F. Wu, RBM38 plays a tumor-suppressor role via stabilizing the p53-mdm2 loop function in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 37, 212 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  25. L. Yang, Y. Zhang, C. Ling, W. Heng, RNPC1 inhibits non-small cell lung cancer progression via regulating miR-181a/CASC2 axis. Biotechnol. Lett. 40, 543–550 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. M.M. Magiera, S. Mora, B. Mojsa, I. Robbins, I. Lassot, S. Desagher, Trim17-mediated ubiquitination and degradation of Mcl-1 initiate apoptosis in neurons. Cell Death Differ. 20, 281–292 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. J. Zhu, G. Wu, Z. Ke, L. Cao, M. Tang, Z. Li, Q. Li, J. Zhou, Z. Tan, L. Song, J. Li, Targeting TRIM3 deletion-induced tumor-associated lymphangiogenesis prohibits lymphatic metastasis in esophageal squamous cell carcinoma. Oncogene 38, 2736–2749 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. R. Zhang, S.W. Li, L. Liu, J. Yang, G. Huang, Y. Sang, TRIM11 facilitates chemoresistance in nasopharyngeal carcinoma by activating the β-catenin/ABCC9 axis via p62-selective autophagic degradation of Daple. Oncogenesis 9, 45 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. G. Wu, L. Song, J. Zhu, Y. Hu, L. Cao, Z. Tan, S. Zhang, Z. Li, J. Li, An ATM/TRIM37/NEMO axis counteracts genotoxicity by activating nuclear-to-cytoplasmic NF-κB signaling. Cancer Res. 78, 6399–6412 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. Q. Tan, J. Ma, H. Zhang, X. Wu, Q. Li, X. Zuo, Y. Jiang, H. Liu, L. Yan, miR-125b-5p upregulation by TRIM28 induces cisplatin resistance in non-small cell lung cancer through CREB1 inhibition. BMC Pulm. Med. 22, 469 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. Hao, J.M. Wang, B.Q. Liu, J. Yan, C. Li, J.Y. Jiang, F.Y. Zhao, H.Y. Qiao, H.Q. Wang, m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118878 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. L. Lionnard, P. Duc, M.S. Brennan, A.J. Kueh, M. Pal, F. Guardia, B. Mojsa, M.A. Damiano, S. Mora, I. Lassot, R. Ravichandran, C. Cochet, A. Aouacheria, P.R. Potts, M.J. Herold, S. Desagher, J. Kucharczak, TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ. 26, 902–917 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. N. Wang, L. Song, Y. Xu, L. Zhang, Y. Wu, J. Guo, W. Ji, L. Li, J. Zhao, X. Zhang, L. Zhan, Loss of Scribble confers cisplatin resistance during NSCLC chemotherapy via Nox2/ROS and Nrf2/PD-L1 signaling. EBioMedicine 47, 65–77 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  34. C. Pan, L. Jin, X. Wang, Y. Li, J. Chun, A.C. Boese, D. Li, H.B. Kang, G. Zhang, L. Zhou, G.Z. Chen, N.F. Saba, D.M. Shin, K.R. Magliocca, T.K. Owonikoko, H. Mao, S. Lonial, S. Kang, Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J. Clin. Invest. 129, 2431–2445 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  35. H. Endo, K. Ikeda, T. Urano, K. Horie-Inoue, S. Inoue, Terf/TRIM17 stimulates degradation of kinetochore protein ZWINT and regulates cell proliferation. J. Biochem. 151, 139–144 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. J. Zhang, E. Xu, C. Ren, W. Yan, M. Zhang, M. Chen, R.D. Cardiff, D.M. Imai, E. Wisner, X. Chen, Mice deficient in Rbm38, a target of the p53 family, are susceptible to accelerated aging and spontaneous tumors. Proc. Natl. Acad. Sci. U. S. A. 111, 18637–18642 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Jiang, E. Xu, J. Zhang, M. Chen, E. Flores, X. Chen, The Rbm38-p63 feedback loop is critical for tumor suppression and longevity. Oncogene 37, 2863–2872 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J. Zhang, E. Xu, C. Ren, H.J. Yang, Y. Zhang, W. Sun, X. Kong, W. Zhang, M. Chen, E. Huang, X. Chen, Genetic ablation of Rbm38 promotes lymphomagenesis in the context of mutant p53 by downregulating PTEN. Cancer Res. 78, 1511–1521 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Ke, K. Ni, H. Xue, J. Li, RBM38 is negatively regulated by miR-320b and enhances Adriamycin resistance in breast cancer cells. Oncol. Lett. 23, 27 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Research Foundation from Sichuan Provincial Health and Family Planning Commission of China (17PJ039).

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived, designed, and interpreted by TZ, JZ and HML. TZ, JZ and XGL undertook the experiments. TZ drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xingren Liu or Hongmin Li.

Ethics declarations

Ethical approval

This study was approved by the Institutional Review Board of University of Electronic Science and Technology of China (Chengdu, China). Written informed consent for research was obtained from each patient. The protocols involving animals were approved by the Institutional Animal Care and User Committee of University of Electronic Science and Technology of China.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tian Zhong and Jing Zhang contributed equally to this work and should be considered co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7239 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Zhang, J., Liu, X. et al. TRIM17-mediated ubiquitination and degradation of RBM38 promotes cisplatin resistance in non-small cell lung cancer. Cell Oncol. 46, 1493–1507 (2023). https://doi.org/10.1007/s13402-023-00825-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00825-6

Keywords

Navigation