Skip to main content

Advertisement

Log in

The composition and roles of gastric stem cells in epithelial homeostasis, regeneration, and tumorigenesis

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

The epithelial lining of the stomach undergoes rapid turnover to preserve its structural and functional integrity, a process driven by long-lived stem cells residing in the antral and corpus glands. Several subpopulations of gastric stem cells have been identified and their phenotypic and functional diversities linked to spatiotemporal specification of stem cells niches. Here, we review the biological features of gastric stem cells at various locations of the stomach under homeostatic conditions, as demonstrated by reporter mice, lineage tracing, and single cell sequencing. We also review the role of gastric stem cells in epithelial regeneration in response to injury. Moreover, we discuss emerging evidence demonstrating that accumulation of oncogenic drivers or alteration of stemness signaling pathways in gastric stem cells promotes gastric cancer. Given a fundamental role of the microenvironment, this review highlights the role reprogramming of niche components and signaling pathways under pathological conditions in dictating stem cell fate. Several outstanding issues are raised, such as the relevance of stem cell heterogeneity and plasticity, and epigenetic regulatory mechanisms, to Helicobacter pylori infection-initiated metaplasia-carcinogenesis cascades. With the development of spatiotemporal genomics, transcriptomics, and proteomics, as well as multiplexed screening and tracing approaches, we anticipate that more precise definition and characterization of gastric stem cells, and the crosstalk with their niche will be delineated in the near future. Rational exploitation and proper translation of these findings may bring forward novel modalities for epithelial rejuvenation and cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Y. Hayakawa, H. Nakagawa, A.K. Rustgi, J. Que, T.C. Wang, Stem cells and origins of cancer in the upper gastrointestinal tract. Cell. stem cell. 28, 1343–1361 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. D. Liabeuf, M. Oshima, D.E. Stange, M. Sigal, Stem cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology 162, 1067-1087 (2022)

  3. D. Liabeuf, M. Oshima, D.E. Stange, M. Sigal, Stem cells, Helicobacter pylori, and Mutational Landscape: utility of preclinical models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology 162, 1067–1087 (2022)

    CAS  PubMed  Google Scholar 

  4. Y. Hayakawa, J.G. Fox, T.C. Wang, The Origins of Gastric Cancer from gastric stem cells: Lessons from mouse models. Cell. Mol. Gastroenterol. Hepatol. 3, 331–338 (2017)

    PubMed  PubMed Central  Google Scholar 

  5. S.M. Karam, Lineage commitment and maturation of epithelial cells in the gut. Front. Biosci. 4, D286-298 (1999)

  6. Y. Hayakawa, G. Jin, H. Wang, X. Chen, C.B. Westphalen, S. Asfaha, B.W. Renz, H. Ariyama, Z.A. Dubeykovskaya, Y. Takemoto, Y. Lee, A. Muley, Y. Tailor, D. Chen, S. Muthupalani, J.G. Fox, A. Shulkes, D.L. Worthley, S. Takaishi, T.C. Wang, CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis. Gut 64, 544–553 (2015)

    CAS  PubMed  Google Scholar 

  7. E.R. Gross, M.D. Gershon, K.G. Margolis, Z.V. Gertsberg, Z. Li, R.A. Cowles, Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143, 408–417.e402 (2012)

    CAS  PubMed  Google Scholar 

  8. S.G. Willet, J.C. Mills, Stomach organ and cell lineage differentiation: from Embryogenesis to Adult Homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2, 546–559 (2016)

    PubMed  PubMed Central  Google Scholar 

  9. M.F. Offield, T.L. Jetton, P.A. Labosky, M. Ray, R.W. Stein, M.A. Magnuson, B.L. Hogan, C.V. Wright, PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 122, 983–995 (1996)

    CAS  Google Scholar 

  10. L.I. Larsson, O.D. Madsen, P. Serup, J. Jonsson, H. Edlund, Pancreatic-duodenal homeobox 1 -role in gastric endocrine patterning. Mech. Dev 60, 175–184 (1996)

    CAS  PubMed  Google Scholar 

  11. L. Raghoebir, E.R. Bakker, J.C. Mills, S. Swagemakers, M.B. Kempen, A.B. Munck, S. Driegen, D. Meijer, F. Grosveld, D. Tibboel, R. Smits, R.J. Rottier, SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. J. Mol. Cell Biol 4, 377–385 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Bjerknes, H. Cheng, Multipotential stem cells in adult mouse gastric epithelium. Am. J. Physiol. Gastrointest. Liver. Physiol 283, G767–G777 (2002)

    CAS  PubMed  Google Scholar 

  13. S. Nomura, H. Esumi, C. Job, S.S. Tan, Lineage and clonal development of gastric glands. Dev. Biol 204, 124–135 (1998)

    CAS  PubMed  Google Scholar 

  14. S.M. Karam, C.P. Leblond, Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat. Rec 236, 280–296 (1993)

    CAS  PubMed  Google Scholar 

  15. S.M. Karam, C.P. Leblond, Dynamics of epithelial cells in the corpus of the mouse stomach. V. Behavior of entero-endocrine and caveolated cells: general conclusions on cell kinetics in the oxyntic epithelium. Anat. Rec 236, 333–340 (1993)

    CAS  PubMed  Google Scholar 

  16. E.R. Lee, C.P. Leblond, Dynamic histology of the antral epithelium in the mouse stomach: IV. Ultrastructure and renewal of gland cells. Am. J. Anat 172, 241–259 (1985)

    CAS  PubMed  Google Scholar 

  17. K. Arnold, A. Sarkar, M.A. Yram, J.M. Polo, R. Bronson, S. Sengupta, M. Seandel, N. Geijsen, K. Hochedlinger, Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell. stem cell. 9, 317–329 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. A.E. Powell, Y. Wang, Y. Li, E.J. Poulin, A.L. Means, M.K. Washington, J.N. Higginbotham, A. Juchheim, N. Prasad, S.E. Levy, Y. Guo, Y. Shyr, B.J. Aronow, K.M. Haigis, J.L. Franklin, R.J. Coffey, The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Choi, T.L. Lantz, G. Vlacich, T.M. Keeley, L.C. Samuelson, R.J. Coffey, J.R. Goldenring, A.E. Powell, Lrig1 + gastric isthmal progenitor cells restore normal gastric lineage cells during damage recovery in adult mouse stomach. Gut 67, 1595–1605 (2018)

    CAS  PubMed  Google Scholar 

  20. Y. Hayakawa, H. Ariyama, J. Stancikova, K. Sakitani, S. Asfaha, B.W. Renz, Z.A. Dubeykovskaya, W. Shibata, H. Wang, C.B. Westphalen, X. Chen, Y. Takemoto, W. Kim, S.S. Khurana, Y. Tailor, K. Nagar, H. Tomita, A. Hara, A.R. Sepulveda, W. Setlik, M.D. Gershon, S. Saha, L. Ding, Z. Shen, J.G. Fox, R.A. Friedman, S.F. Konieczny, D.L. Worthley, V. Korinek, T.C. Wang, Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer cell. 28, 800–814 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. H. Nienhüser, W. Kim, E. Malagola, T. Ruan, G. Valenti, M. Middelhoff, A. Bass, C.J. Der, Y. Hayakawa, T.C. Wang, Mist1 + gastric isthmus stem cells are regulated by Wnt5a and expand in response to injury and inflammation in mice. Gut 70, 654–665 (2021)

    PubMed  Google Scholar 

  22. J. Matsuo, S. Kimura, A. Yamamura, C.P. Koh, M.Z. Hossain, D.L. Heng, K. Kohu, D.C. Voon, H. Hiai, M. Unno, J.B. So, F. Zhu, S. Srivastava, M. Teh, K.G. Yeoh, M. Osato, Y. Ito, Identification of stem cells in the epithelium of the stomach Corpus and Antrum of mice. Gastroenterology 152, 218–231.e214 (2017)

    PubMed  Google Scholar 

  23. T. Yoshioka, A. Fukuda, O. Araki, S. Ogawa, Y. Hanyu, Y. Matsumoto, Y. Yamaga, Y. Nakanishi, K. Kawada, Y. Sakai, T. Chiba, H. Seno, Bmi1 marks gastric stem cells located in the isthmus in mice. J. Pathol 248, 179–190 (2019)

    CAS  PubMed  Google Scholar 

  24. J. Matsuo, D. Douchi, K. Myint, N.N. Mon, A. Yamamura, K. Kohu, D.L. Heng, S. Chen, N.A. Mawan, N. Nuttonmanit, Y. Li, S. Srivastava, S.W.T. Ho, N.Y.S. Lee, H.K. Lee, M. Adachi, A. Tamura, J. Chen, H. Yang, M. Teh, J.B. So, W.P. Yong, P. Tan, K.G. Yeoh, L.S.H. Chuang, S. Tsukita, Y. Ito, Iqgap3-Ras axis drives stem cell proliferation in the stomach corpus during homoeostasis and repair. Gut 70, 1833–1846 (2021)

    CAS  PubMed  Google Scholar 

  25. M. Quante, F. Marrache, J.R. Goldenring, T.C. Wang, TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa. Gastroenterology. 139, 2018–2027. e2012 (2010)

  26. J. Dong, X. Wu, X. Zhou, Y. Gao, C. Wang, W. Wang, W. He, J. Li, W. Deng, J. Liao, X. Wu, Y. Lu, A.K. Chen, L. Wen, W. Fu, F. Tang, Spatially-resolved Expression Landscape and gene-regulatory Network of Human Gastric corpus Epithelium. Protein. cell. (2022)

  27. T.J. Phesse, O.J. Sansom, Lgr5 joins the club of gastric stem cell markers in the corpus. Nat. Cell Biol 19, 752–754 (2017)

    CAS  PubMed  Google Scholar 

  28. S. Han, J. Fink, D.J. Jörg, E. Lee, M.K. Yum, L. Chatzeli, S.R. Merker, M. Josserand, T. Trendafilova, A. Andersson-Rolf, C. Dabrowska, H. Kim, R. Naumann, J.H. Lee, N. Sasaki, R.L. Mort, O. Basak, H. Clevers, D.E. Stange, A. Philpott, J.K. Kim, B.D. Simons, and B.K. Koo, defining the Identity and Dynamics of Adult gastric isthmus stem cells. Cell. stem cell. 25, 342–356.e347 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Leushacke, S.H. Tan, A. Wong, Y. Swathi, A. Hajamohideen, L.T. Tan, J. Goh, E. Wong, S. Denil, K. Murakami, N. Barker, Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat. Cell Biol 19, 774–786 (2017)

    CAS  PubMed  Google Scholar 

  30. J.H. Lee, S. Kim, S. Han, J. Min, B. Caldwell, A.D. Bamford, A.S.B. Rocha, J. Park, S. Lee, S.S. Wu, H. Lee, J. Fink, S. Pilat-Carotta, J. Kim, M. Josserand, R. Szep-Bakonyi, Y. An, Y.S. Ju, A. Philpott, B.D. Simons, D.E. Stange, E. Choi, B.K. Koo, J.K. Kim, p57(Kip2) imposes the reserve stem cell state of gastric chief cells. Cell. stem cell. 29, 826–839.e829 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Burclaff, S.G. Willet, J.B. Sáenz, J.C. Mills, Proliferation and differentiation of Gastric Mucous Neck and Chief cells during Homeostasis and Injury-induced Metaplasia. Gastroenterology 158, 598–609.e595 (2020)

    CAS  PubMed  Google Scholar 

  32. D.E. Stange, B.K. Koo, M. Huch, G. Sibbel, O. Basak, A. Lyubimova, P. Kujala, S. Bartfeld, J. Koster, J.H. Geahlen, P.J. Peters, J.H. van Es, M. van de Wetering, J.C. Mills, H. Clevers, Differentiated Troy + chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. E.D. Bankaitis, A. Ha, C.J. Kuo, S.T. Magness, Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 155, 1348–1361 (2018)

    PubMed  Google Scholar 

  34. N. Barker, J.H. van Es, J. Kuipers, P. Kujala, M. van den Born, M. Cozijnsen, A. Haegebarth, J. Korving, H. Begthel, P.J. Peters, H. Clevers, Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007)

    CAS  PubMed  Google Scholar 

  35. N. Barker, M. van de Wetering, H. Clevers, The intestinal stem cell. Genes Dev 22, 1856–1864 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. N. Barker, M. Huch, P. Kujala, M. van de Wetering, H.J. Snippert, J.H. van Es, T. Sato, D.E. Stange, H. Begthel, M. van den Born, E. Danenberg, S. van den Brink, J. Korving, A. Abo, P.J. Peters, N. Wright, R. Poulsom, H. Clevers, Lgr5(+ ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell. stem cell. 6, 25–36 (2010)

    CAS  PubMed  Google Scholar 

  37. K.A. Bockerstett, S.A. Lewis, K.J. Wolf, C.N. Noto, N.M. Jackson, E.L. Ford, T.H. Ahn, R.J. DiPaolo, Single-cell transcriptional analyses of spasmolytic polypeptide-expressing metaplasia arising from acute drug injury and chronic inflammation in the stomach. Gut 69, 1027–1038 (2020)

    CAS  PubMed  Google Scholar 

  38. M. Sigal, C.Y. Logan, M. Kapalczynska, H.J. Mollenkopf, H. Berger, B. Wiedenmann, R. Nusse, M.R. Amieva, T.F. Meyer, Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 548, 451–455 (2017)

    CAS  PubMed  Google Scholar 

  39. S.H. Tan, Y. Swathi, S. Tan, J. Goh, R. Seishima, K. Murakami, M. Oshima, T. Tsuji, P. Phuah, L.T. Tan, E. Wong, A. Fatehullah, T. Sheng, S.W.T. Ho, H.I. Grabsch, S. Srivastava, M. Teh, S. Denil, S. Mustafah, P. Tan, A. Shabbir, J. So, K.G. Yeoh and N. Barker, AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature 578, 437–443 (2020)

    CAS  PubMed  Google Scholar 

  40. S.H. Lee, B. Jang, J. Min, E.W. Contreras-Panta, K.S. Presentation, A.G. Delgado, M.B. Piazuelo, E. Choi, J.R. Goldenring, Up-regulation of aquaporin 5 defines spasmolytic polypeptide-expressing metaplasia and progression to incomplete intestinal metaplasia. Cell. Mol. Gastroenterol. Hepatol. 13, 199–217 (2022)

    PubMed  Google Scholar 

  41. K. Sakitani, Y. Hayakawa, H. Deng, H. Ariyama, H. Kinoshita, M. Konishi, S. Ono, N. Suzuki, S. Ihara, Z. Niu, W. Kim, T. Tanaka, H. Liu, X. Chen, Y. Tailor, J.G. Fox, S.F. Konieczny, H. Onodera, A.R. Sepulveda, S. Asfaha, Y. Hirata, D.L. Worthley, K. Koike, T.C. Wang, CXCR4-expressing Mist1(+) progenitors in the gastric antrum contribute to gastric cancer development. Oncotarget 8, 111012–111025 (2017)

    PubMed  PubMed Central  Google Scholar 

  42. W. Sheng, E. Malagola, H. Nienhüser, Z. Zhang, W. Kim, L. Zamechek, A. Sepulveda, M. Hata, Y. Hayakawa, C.M. Zhao, D. Chen, T.C. Wang, Hypergastrinemia expands gastric ECL cells through CCK2R(+) progenitor cells via ERK Activation. Cell. Mol. Gastroenterol. Hepatol. 10, 434–449.e431 (2020)

    PubMed  PubMed Central  Google Scholar 

  43. L. Li, H. Clevers, Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542-545 (2010)

  44. K.S. Yan, L.A. Chia, X. Li, A. Ootani, J. Su, J.Y. Lee, N. Su, Y. Luo, S.C. Heilshorn, M.R. Amieva, E. Sangiorgi, M.R. Capecchi, C.J. Kuo, The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl. Acad. Sci. U.S.A 109, 466–471 (2012)

    CAS  PubMed  Google Scholar 

  45. P. Tan, K.G. Yeoh, Genetics and Molecular Pathogenesis of gastric adenocarcinoma. Gastroenterology 149, 1153–1162.e1153 (2015)

    CAS  PubMed  Google Scholar 

  46. P. Correa, M.B. Piazuelo, K.T. Wilson, Pathology of gastric intestinal metaplasia: clinical implications. Am. J. Gastroenterol 105, 493–498 (2010)

    PubMed  PubMed Central  Google Scholar 

  47. M.R. Howitt, J.Y. Lee, P. Lertsethtakarn, R. Vogelmann, L.M. Joubert, K.M. Ottemann, M.R. Amieva, ChePep controls Helicobacter pylori Infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. mBio. 2, (2011)

  48. K.A. Earle, G. Billings, M. Sigal, J.S. Lichtman, G.C. Hansson, J.E. Elias, M.R. Amieva, K.C. Huang, J.L. Sonnenburg, Quantitative imaging of gut microbiota spatial Organization. Cell. host & microbe 18, 478–488 (2015)

    CAS  Google Scholar 

  49. M. Sigal, M.E. Rothenberg, C.Y. Logan, J.Y. Lee, R.W. Honaker, R.L. Cooper, B. Passarelli, M. Camorlinga, D.M. Bouley, G. Alvarez, R. Nusse, J. Torres, M.R. Amieva, Helicobacter pylori activates and expands Lgr5(+) stem cells through direct colonization of the gastric glands. Gastroenterology 148, 1392–1404.e1321 (2015)

    CAS  PubMed  Google Scholar 

  50. C.P. Petersen, J.C. Mills, J.R. Goldenring, Murine Models of Gastric Corpus Preneoplasia. Cell. Mol. Gastroenterol. Hepatol. 3, 11–26 (2017)

  51. P.H. Schmidt, J.R. Lee, V. Joshi, R.J. Playford, R. Poulsom, N.A. Wright, J.R. Goldenring, Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab. Invest 79, 639–646 (1999)

    CAS  PubMed  Google Scholar 

  52. J.B. Sáenz, J.C. Mills, Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat. Rev. Gastroenterol. Hepatol 15, 257–273 (2018)

    PubMed  PubMed Central  Google Scholar 

  53. Y. Hayakawa, J.G. Fox, T.C. Wang, Isthmus stem cells are the Origins of Metaplasia in the gastric Corpus. Cell. Mol. Gastroenterol. Hepatol. 4, 89–94 (2017)

    PubMed  PubMed Central  Google Scholar 

  54. H. Kinoshita, Y. Hayakawa, Z. Niu, M. Konishi, M. Hata, M. Tsuboi, Y. Hayata, Y. Hikiba, S. Ihara, H. Nakagawa, Y. Hirata, T.C. Wang, K. Koike, Mature gastric chief cells are not required for the development of metaplasia. Am. J. Physiol. Gastrointest. Liver. Physiol 314, G583–Gg596 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. J.R. Goldenring, K.T. Nam, J.C. Mills, The origin of pre-neoplastic metaplasia in the stomach: chief cells emerge from the Mist. Exp. Cell Res 317, 2759–2764 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. M.D. Radyk, J. Burclaff, S.G. Willet, J.C. Mills, Metaplastic cells in the stomach arise, independently of stem cells, via dedifferentiation or transdifferentiation of Chief cells. Gastroenterology 154, 839–843.e832 (2018)

    PubMed  Google Scholar 

  57. J.C. Mills, J.R. Goldenring, Metaplasia in the stomach arises from gastric Chief cells. Cell. Mol. Gastroenterol. Hepatol. 4, 85–88 (2017)

    PubMed  PubMed Central  Google Scholar 

  58. S.G. Willet, M.A. Lewis, Z.F. Miao, D. Liu, M.D. Radyk, R.L. Cunningham, J. Burclaff, G. Sibbel, H.G. Lo, V. Blanc, N.O. Davidson, Z.N. Wang, J.C. Mills, Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J. 37, (2018)

  59. Z.F. Miao, C.J. Cho, Z.N. Wang, J.C. Mills, Autophagy repurposes cells during paligenosis. Autophagy 17, 588–589 (2021)

    CAS  PubMed  Google Scholar 

  60. K.T. Nam, H.J. Lee, J.F. Sousa, V.G. Weis, R.L. O’Neal, P.E. Finke, J. Romero-Gallo, G. Shi, J.C. Mills, R.M. Peek Jr., S.F. Konieczny, J.R. Goldenring, Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology. 139, 2028–2037. e2029 (2010)

  61. B. Caldwell, A.R. Meyer, J.A. Weis, A.C. Engevik, E. Choi, Chief cell plasticity is the origin of metaplasia following acute injury in the stomach mucosa. Gut 71, 1068–1077 (2022)

    CAS  PubMed  Google Scholar 

  62. S. Yui, T. Nakamura, T. Sato, Y. Nemoto, T. Mizutani, X. Zheng, S. Ichinose, T. Nagaishi, R. Okamoto, K. Tsuchiya, H. Clevers, M. Watanabe, Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med 18, 618–623 (2012)

    CAS  PubMed  Google Scholar 

  63. S. Sugimoto, E. Kobayashi, M. Fujii, Y. Ohta, K. Arai, M. Matano, K. Ishikawa, K. Miyamoto, K. Toshimitsu, S. Takahashi, K. Nanki, Y. Hakamata, T. Kanai, T. Sato, An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature 592, 99–104 (2021)

    CAS  PubMed  Google Scholar 

  64. F. Blokzijl, J. de Ligt, M. Jager, V. Sasselli, S. Roerink, N. Sasaki, M. Huch, S. Boymans, E. Kuijk, P. Prins, I.J. Nijman, I. Martincorena, M. Mokry, C.L. Wiegerinck, S. Middendorp, T. Sato, G. Schwank, E.E. Nieuwenhuis, M.M. Verstegen, L.J. van der Laan, J. de Jonge, I.J. JN, R.G. Vries, M. van de Wetering, M.R. Stratton, H. Clevers, E. Cuppen, R. van Boxtel, Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. N. Barker, Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol 15, 19–33 (2014)

    CAS  PubMed  Google Scholar 

  66. J. Min, C. Zhang, R.J. Bliton, B. Caldwell, L. Caplan, K.S. Presentation, D.J. Park, S.H. Kong, H.S. Lee, M.K. Washington, W.H. Kim, K.S. Lau, S.T. Magness, H.J. Lee, H.K. Yang, J.R. Goldenring, E. Choi, Dysplastic stem cell plasticity functions as a Driving Force for Neoplastic Transformation of Precancerous gastric mucosa. Gastroenterology 163, 875–890 (2022)

    PubMed  Google Scholar 

  67. Y. Hayakawa, N. Sethi, A.R. Sepulveda, A.J. Bass, T.C. Wang, Oesophageal adenocarcinoma and gastric cancer: should we mind the gap? Nature reviews. Cancer 16, 305–318 (2016)

    CAS  PubMed  Google Scholar 

  68. A. Sarkar, A.J. Huebner, R. Sulahian, A. Anselmo, X. Xu, K. Flattery, N. Desai, C. Sebastian, M.A. Yram, K. Arnold, M. Rivera, R. Mostoslavsky, R. Bronson, A.J. Bass, R. Sadreyev, R.A. Shivdasani, K. Hochedlinger, Sox2 suppresses gastric tumorigenesis in mice. Cell. reports. 16, 1929–1941 (2016)

  69. Z.F. Miao, J.X. Sun, M. Adkins-Threats, M.J. Pang, J.H. Zhao, X. Wang, K.W. Tang, Z.N. Wang, J.C. Mills, DDIT4 licenses only healthy cells to Proliferate during Injury-induced Metaplasia. Gastroenterology 160, 260–271.e210 (2021)

    CAS  PubMed  Google Scholar 

  70. J.C. Mills, O.J. Sansom, Reserve stem cells: differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Sci. Signal 8, re8 (2015)

    PubMed  PubMed Central  Google Scholar 

  71. A. Fatehullah, Y. Terakado, S. Sagiraju, T.L. Tan, T. Sheng, S.H. Tan, K. Murakami, Y. Swathi, N. Ang, R. Rajarethinam, T. Ming, P. Tan, B. Lee, N. Barker, A tumour-resident Lgr5(+) stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nat. Cell Biol 23, 1299–1313 (2021)

    CAS  PubMed  Google Scholar 

  72. W. Chang, H. Wang, W. Kim, Y. Liu, H. Deng, H. Liu, Z. Jiang, Z. Niu, W. Sheng, O.C. Nápoles, Y. Sun, J. Xu, A. Sepulveda, Y. Hayakawa, A.J. Bass, T.C. Wang, Hormonal suppression of stem cells inhibits symmetric cell Division and gastric tumorigenesis. Cell. stem cell. 26, 739–754.e738 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. X.B. Li, G. Yang, L. Zhu, Y.L. Tang, C. Zhang, Z. Ju, X. Yang, Y. Teng, Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Res 26, 838–849 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. T. Uehara, D. Ma, Y. Yao, J.P. Lynch, K. Morales, A. Ziober, M. Feldman, H. Ota, A.R. Sepulveda, H. pylori infection is associated with DNA damage of Lgr5-positive epithelial stem cells in the stomach of patients with gastric cancer. Dig. Dis. Sci 58, 140–149 (2013)

    CAS  PubMed  Google Scholar 

  75. N. Barker, R.A. Ridgway, J.H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A.R. Clarke, O.J. Sansom, H. Clevers, Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009)

    CAS  PubMed  Google Scholar 

  76. T. Sato, J.H. van Es, H.J. Snippert, D.E. Stange, R.G. Vries, M. van den Born, N. Barker, N.F. Shroyer, M. van de Wetering, H. Clevers, Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011)

    CAS  PubMed  Google Scholar 

  77. I. Stzepourginski, G. Nigro, J.M. Jacob, S. Dulauroy, P.J. Sansonetti, G. Eberl, L. Peduto, CD34 + mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc. Natl. Acad. Sci. U.S.A 114, E506–E513 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Z. Kabiri, G. Greicius, B. Madan, S. Biechele, Z. Zhong, H. Zaribafzadeh, J. Edison, Y. Aliyev, R. Wu, B.O. Bunte, J. Williams, Rossant, D.M. Virshup, Stroma provides an intestinal stem cell niche in the absence of epithelial wnts. Dev. (Cambridge England) 141, 2206–2215 (2014)

    CAS  Google Scholar 

  79. S.W. Lane, D.A. Williams, F.M. Watt, Modulating the stem cell niche for tissue regeneration. Nat. Biotechnol 32, 795–803 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. J. Liu, J. Wu, R. Wang, D. Zhong, Y. Qiu, H. Wang, Z. Song, Y. Zhu, ANKRD22 drives Rapid Proliferation of Lgr5(+) cells and Acts as a Promising Therapeutic Target in Gastric Mucosal Injury. Cell. Mol. Gastroenterol. Hepatol. 12, 1433–1455 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. L. Lum, P.A. Beachy, The Hedgehog response network: sensors, switches and routers. Science 304, 1755-1759 (2004).

  82. J.L. Merchant, L. Ding, Hedgehog signaling links chronic inflammation to gastric Cancer precursor lesions. Cell. Mol. Gastroenterol. Hepatol. 3, 201–210 (2017)

    PubMed  PubMed Central  Google Scholar 

  83. M. Ramalho-Santos, D.A. Melton, A.P. McMahon, Hedgehog signals regulate multiple aspects of gastrointestinal development. Dev. (Cambridge England) 127, 2763–2772 (2000)

    CAS  Google Scholar 

  84. D. Konstantinou, N. Bertaux-Skeirik, Y. Zavros, Hedgehog signaling in the stomach. Curr. Opin. Pharmacol 31, 76–82 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. J.A. Mäkelä, V. Saario, S. Bourguiba-Hachemi, M. Nurmio, K. Jahnukainen, M. Parvinen, J. Toppari, Hedgehog signalling promotes germ cell survival in the rat testis. Reprod. (Cambridge England) 142, 711–721 (2011)

    Google Scholar 

  86. V. Stepan, S. Ramamoorthy, H. Nitsche, Y. Zavros, J.L. Merchant, A. Todisco, Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells. J. Biol. Chem 280, 15700–15708 (2005)

    CAS  PubMed  Google Scholar 

  87. T.K. Noguchi, N. Ninomiya, M. Sekine, S. Komazaki, P.C. Wang, M. Asashima, A. Kurisaki, Generation of stomach tissue from mouse embryonic stem cells. Nat. Cell Biol 17, 984–993 (2015)

    CAS  PubMed  Google Scholar 

  88. M. Maimets, M.T. Pedersen, J. Guiu, J. Dreier, M. Thodberg, Y. Antoku, P.J. Schweiger, L. Rib, R.B. Bressan, Y. Miao, K.C. Garcia, A. Sandelin, P. Serup, K.B. Jensen, Mesenchymal-epithelial crosstalk shapes intestinal regionalisation via wnt and shh signalling. Nat. Commun 13, 715 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. G.R. van den Brink, J.C. Hardwick, G.N. Tytgat, M.A. Brink, F.J. Ten Kate, S.J. Van Deventer, M.P. Peppelenbosch, Sonic hedgehog regulates gastric gland morphogenesis in man and mouse. Gastroenterology 121, 317–328 (2001)

    PubMed  Google Scholar 

  90. A.J. Bredemeyer, J.H. Geahlen, V.G. Weis, W.J. Huh, B.H. Zinselmeyer, S. Srivatsan, M.J. Miller, A.S. Shaw, J.C. Mills, The gastric epithelial progenitor cell niche and differentiation of the zymogenic (chief) cell lineage. Dev. Biol 325, 211–224 (2009)

    CAS  PubMed  Google Scholar 

  91. Q. Li, S.M. Karam, J.I. Gordon, Diphtheria toxin-mediated ablation of parietal cells in the stomach of transgenic mice. J. Biol. Chem 271, 3671–3676 (1996)

    CAS  PubMed  Google Scholar 

  92. N. Nagy, C. Barad, H.K. Graham, R. Hotta, L.S. Cheng, N. Fejszak, A.M. Goldstein, Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Dev. (Cambridge England) 143, 264–275 (2016)

    CAS  Google Scholar 

  93. J.L. Merchant, Moving up a NOTCH: defining the Stem Cell Niche in the gastric Antrum. Cell. Mol. Gastroenterol. Hepatol. 13, 339–340 (2022)

    CAS  PubMed  Google Scholar 

  94. N. Horita, T.M. Keeley, E.S. Hibdon, E. Delgado, D. Lafkas, C.W. Siebel, L.C. Samuelson, Delta-like 1-Expressing cells at the Gland Base promote proliferation of gastric antral stem cells in mouse. Cell. Mol. Gastroenterol. Hepatol. 13, 275–287 (2022)

    CAS  PubMed  Google Scholar 

  95. G.B. Gifford, E.S. Demitrack, T.M. Keeley, A. Tam, N. La Cunza, P.H. Dedhia, J.R. Spence, D.M. Simeone, I. Saotome, A. Louvi, C.W. Siebel, L.C. Samuelson, Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut 66, 1001–1011 (2017)

    CAS  PubMed  Google Scholar 

  96. T.H. Kim, R.A. Shivdasani, Notch signaling in stomach epithelial stem cell homeostasis. J. Exp. Med 208, 677–688 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  97. E.S. Demitrack, G.B. Gifford, T.M. Keeley, A.J. Carulli, K.L. VanDussen, D. Thomas, T.J. Giordano, Z. Liu, R. Kopan, L.C. Samuelson, Notch signaling regulates gastric antral LGR5 stem cell function. EMBO J 34, 2522–2536 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  98. E.S. Hibdon, N. Razumilava, T.M. Keeley, G. Wong, S. Solanki, Y.M. Shah, L.C. Samuelson, Notch and mTOR Signaling Pathways Promote Human Gastric Cancer Cell Proliferation. Neoplasia 21, 702-712 (2019)

  99. T.H. Kim, B.M. Kim, J. Mao, S. Rowan, R.A. Shivdasani, Endodermal hedgehog signals modulate notch pathway activity in the developing digestive tract mesenchyme. Dev. (Cambridge England) 138, 3225–3233 (2011)

    CAS  Google Scholar 

  100. T.C. Wang, T.J. Koh, A. Varro, R.J. Cahill, C.A. Dangler, J.G. Fox, G.J. Dockray, Processing and proliferative effects of human progastrin in transgenic mice. J. Clin. Investig 98, 1918–1929 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  101. T. Nakajima, Y. Konda, Y. Izumi, M. Kanai, N. Hayashi, T. Chiba, T. Takeuchi, Gastrin stimulates the growth of gastric pit cell precursors by inducing its own receptors. Am. J. Physiol. Gastrointest. Liver. Physiol 282, G359–G366 (2002)

    CAS  PubMed  Google Scholar 

  102. T.J. Koh, D. Chen, Gastrin as a growth factor in the gastrointestinal tract. Regul. Pept 93, 37–44 (2000)

    CAS  PubMed  Google Scholar 

  103. H. Tomita, S. Takaishi, T.R. Menheniott, X. Yang, W. Shibata, G. Jin, K.S. Betz, K. Kawakami, T. Minamoto, C. Tomasetto, M.C. Rio, N. Lerkowit, A. Varro, A.S. Giraud, T.C. Wang, Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology 140, 879–891 (2011)

    CAS  PubMed  Google Scholar 

  104. M. Sigal, M.D.M. Reinés, S. Müllerke, C. Fischer, M. Kapalczynska, H. Berger, E.R.M. Bakker, H.J. Mollenkopf, M.E. Rothenberg, B. Wiedenmann, S. Sauer, T.F. Meyer, R-spondin-3 induces secretory, antimicrobial Lgr5(+) cells in the stomach. Nat. Cell Biol 21, 812–823 (2019)

    CAS  PubMed  Google Scholar 

  105. J. Wizenty, S. Müllerke, M. Kolesnichenko, J. Heuberger, M. Lin, A.S. Fischer, H.J. Mollenkopf, H. Berger, F. Tacke, M. Sigal, Gastric stem cells promote inflammation and gland remodeling in response to Helicobacter pylori via Rspo3-Lgr4 axis. EMBO J 41, e109996 (2022)

  106. H. Takabayashi, M. Shinohara, M. Mao, P. Phaosawasdi, M. El-Zaatari, M. Zhang, T. Ji, K.A. Eaton, D. Dang, J. Kao, A. Todisco, Anti-inflammatory activity of bone morphogenetic protein signaling pathways in stomachs of mice. Gastroenterology 147, 396–406.e397 (2014)

    CAS  PubMed  Google Scholar 

  107. M. Kapalczynska, M. Lin, J. Maertzdorf, J. Heuberger, S. Muellerke, X. Zuo, R. Vidal, I. Shureiqi, A.S. Fischer, S. Sauer, H. Berger, E. Kidess, H.J. Mollenkopf, F. Tacke, T.F. Meyer, M. Sigal, BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H. pylori-driven inflammation. Nat. Commun 13, 1577 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  108. S. Wölffling, A.A. Daddi, A. Imai-Matsushima, K. Fritsche, C. Goosmann, J. Traulsen, R. Lisle, M. Schmid, M.D.M. Reines-Benassar, L. Pfannkuch, V. Brinkmann, J. Bornschein, P. Malfertheiner, J. Ordemann, A. Link, T.F. Meyer, F. Boccellato, EGF and BMPs govern differentiation and patterning in human gastric glands. Gastroenterology 161, 623–636.e616 (2021)

    PubMed  Google Scholar 

  109. M. Shinohara, M. Mao, T.M. Keeley, M. El-Zaatari, H.J. Lee, K.A. Eaton, L.C. Samuelson, J.L. Merchant, J.R. Goldenring, A. Todisco, Bone morphogenetic protein signaling regulates gastric epithelial cell development and proliferation in mice. Gastroenterology 139, 2050–2060.e2052 (2010)

  110. A. Todisco, Regulation of gastric metaplasia, Dysplasia, and Neoplasia by Bone morphogenetic protein signaling. Cell. Mol. Gastroenterol. Hepatol. 3, 339–347 (2017)

    PubMed  PubMed Central  Google Scholar 

  111. S. Bartfeld, B.K. Koo, Adult gastric stem cells and their niches. Wiley. Interdiscip. Rev. Dev. Biol. 6, (2017)

  112. W. Ye, H. Takabayashi, Y. Yang, M. Mao, E.S. Hibdon, L.C. Samuelson, K.A. Eaton, A. Todisco, Regulation of gastric Lgr5 + ve cell homeostasis by bone morphogenetic protein (BMP) signaling and inflammatory stimuli. Cell. Mol. Gastroenterol. Hepatol. 5, 523–538 (2018)

    PubMed  PubMed Central  Google Scholar 

  113. X. Zuo, Y. Deguchi, W. Xu, Y. Liu, H.S. Li, D. Wei, R. Tian, W. Chen, M. Xu, Y. Yang, S. Gao, J.C. Jaoude, F. Liu, S.P. Chrieki, M.J. Moussalli, M. Gagea, M.M. Sebastian, X. Zheng, D. Tan, R. Broaddus, J. Wang, N.J. Ajami, A.G. Swennes, S.S. Watowich and I. Shureiqi, PPARD and Interferon Gamma Promote Transformation of gastric progenitor cells and tumorigenesis in mice. Gastroenterology 157, 163–178 (2019)

    CAS  PubMed  Google Scholar 

  114. P.J. Tutton, R.D. Helme, Proceedings: The role of catecholamines in the regulation of crypt cell proliferation. I. Adrenergic stimulation and blockade. J. Anat. 116, 467–468 (1973)

  115. K.B. Neal, J.C. Bornstein, Mapping 5-HT inputs to enteric neurons of the guinea-pig small intestine. Neuroscience 145, 556–567 (2007)

    CAS  PubMed  Google Scholar 

  116. Y. Hayakawa, K. Sakitani, M. Konishi, S. Asfaha, R. Niikura, H. Tomita, B.W. Renz, Y. Tailor, M. Macchini, M. Middelhoff, Z. Jiang, T. Tanaka, Z.A. Dubeykovskaya, W. Kim, X. Chen, A.M. Urbanska, K. Nagar, C.B. Westphalen, M. Quante, C.S. Lin, M.D. Gershon, A. Hara, C.M. Zhao, D. Chen, D.L. Worthley, K. Koike, T.C. Wang, Nerve growth factor promotes gastric tumorigenesis through aberrant Cholinergic Signaling. Cancer cell. 31, 21–34 (2017)

    CAS  PubMed  Google Scholar 

  117. A.K. Eicher, D.O. Kechele, N. Sundaram, H.M. Berns, H.M. Poling, L.E. Haines, J.G. Sanchez, K. Kishimoto, M. Krishnamurthy, L. Han, A.M. Zorn, M.A. Helmrath, J.M. Wells, Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell. stem cell. 29, 36–51.e36 (2022)

    CAS  PubMed  Google Scholar 

  118. S. Bartfeld, T. Bayram, M. van de Wetering, M. Huch, H. Begthel, P. Kujala, R. Vries, P.J. Peters, H. Clevers, In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136.e126 (2015)

    PubMed  Google Scholar 

  119. H. Oshima, A. Matsunaga, T. Fujimura, T. Tsukamoto, M.M. Taketo, M. Oshima, Carcinogenesis in mouse stomach by simultaneous activation of the wnt signaling and prostaglandin E2 pathway. Gastroenterology 131, 1086–1095 (2006)

    CAS  PubMed  Google Scholar 

  120. S. Radulescu, R.A. Ridgway, J. Cordero, D. Athineos, P. Salgueiro, R. Poulsom, J. Neumann, A. Jung, S. Patel, J. Woodgett, N. Barker, D.M. Pritchard, K. Oien, O.J. Sansom, Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation. Oncogene 32, 2048–2057 (2013)

    CAS  PubMed  Google Scholar 

  121. E. Choi, A.L. Means, R.J. Coffey, J.R. Goldenring, Active Kras expression in gastric isthmal progenitor cells induces Foveolar Hyperplasia but not Metaplasia. Cell. Mol. Gastroenterol. Hepatol. 7, 251–253.e251 (2019)

    PubMed  Google Scholar 

  122. E. Tremblay, S. Monfils, D. Ménard, Epidermal growth factor influences cell proliferation, glycoproteins, and lipase activity in human fetal stomach. Gastroenterology 112, 1188–1196 (1997)

    CAS  PubMed  Google Scholar 

  123. S. Keates, A.C. Keates, K. Katchar, R.M. Peek Jr., C.P. Kelly, Helicobacter pylori induces up-regulation of the epidermal growth factor receptor in AGS gastric epithelial cells. J. Infect. Dis 196, 95–103 (2007)

    CAS  PubMed  Google Scholar 

  124. S. Keates, A.C. Keates, S. Nath, R.M. Peek Jr., C.P. Kelly, Transactivation of the epidermal growth factor receptor by cag + Helicobacter pylori induces upregulation of the early growth response gene Egr-1 in gastric epithelial cells. Gut 54, 1363–1369 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  125. M. Romano, V. Ricci, A. Di Popolo, P. Sommi, C. Del Vecchio Blanco, C.B. Bruni, U. Ventura, T.L. Cover, M.J. Blaser, R.J. Coffey, R. Zarrilli, Helicobacter pylori upregulates expression of epidermal growth factor-related peptides, but inhibits their proliferative effect in MKN 28 gastric mucosal cells. J. Clin. Investig 101, 1604–1613 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  126. F. Yan, H. Cao, R. Chaturvedi, U. Krishna, S.S. Hobbs, P.J. Dempsey, R.M. Peek Jr., T.L. Cover, M.K. Washington, K.T. Wilson, D.B. Polk, Epidermal growth factor receptor activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Gastroenterology 136, 1297–1307 (2009) e1291-1293

    CAS  PubMed  Google Scholar 

  127. C.A. Lindemans, M. Calafiore, A.M. Mertelsmann, M.H. O’Connor, J.A. Dudakov, R.R. Jenq, E. Velardi, L.F. Young, O.M. Smith, G. Lawrence, J.A. Ivanov, Y.Y. Fu, S. Takashima, G. Hua, M.L. Martin, K.P. O’Rourke, Y.H. Lo, M. Mokry, M. Romera-Hernandez, T. Cupedo, L. Dow, E.E. Nieuwenhuis, N.F. Shroyer, C. Liu, R. Kolesnick, M.R.M. van den Brink, A.M. Hanash, Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  128. A. Rogoz, B.S. Reis, R.A. Karssemeijer, D. Mucida, A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J. Immunol. Methods 421, 89–95 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Y.E. Bar-Ephraim, K. Kretzschmar, H. Clevers, Organoids in immunological research. Nat. Rev. Immunol 20, 279–293 (2020)

    CAS  PubMed  Google Scholar 

  130. J.T. Neal, X. Li, J. Zhu, V. Giangarra, C.L. Grzeskowiak, J. Ju, I.H. Liu, S.H. Chiou, A.A. Salahudeen, A.R. Smith, B.C. Deutsch, L. Liao, A.J. Zemek, F. Zhao, K. Karlsson, L.M. Schultz, T.J. Metzner, L.D. Nadauld, Y.Y. Tseng, S. Alkhairy, C. Oh, P. Keskula, D. Mendoza-Villanueva, F.M. De La Vega, P.L. Kunz, J.C. Liao, J.T. Leppert, J.B. Sunwoo, C. Sabatti, J.S. Boehm, W.C. Hahn, G.X.Y. Zheng, M.M. Davis and C.J. Kuo, Organoid modeling of the Tumor Immune Microenvironment. Cell 175, 1972–1988. e1916 (2018)

  131. P. Voabil, M. de Bruijn, L.M. Roelofsen, S.H. Hendriks, S. Brokamp, M. van den Braber, A. Broeks, J. Sanders, P. Herzig, A. Zippelius, C.U. Blank, K.J. Hartemink, K. Monkhorst, J. Haanen, T.N. Schumacher, D.S. Thommen, An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med 27, 1250–1261 (2021)

    CAS  PubMed  Google Scholar 

  132. P.H. Dedhia, N. Bertaux-Skeirik, Y. Zavros, J.R. Spence, Organoid Models of Human Gastrointestinal Development and Disease. Gastroenterology 150, 1098–1112 (2016)

    PubMed  Google Scholar 

  133. P. Morey, L. Pfannkuch, E. Pang, F. Boccellato, M. Sigal, A. Imai-Matsushima, V. Dyer, M. Koch, H.J. Mollenkopf, P. Schlaermann, T.F. Meyer, Helicobacter pylori depletes cholesterol in gastric glands to prevent Interferon Gamma Signaling and escape the inflammatory response. Gastroenterology 154, 1391–1404.e1399 (2018)

    CAS  PubMed  Google Scholar 

  134. J. Kim, B.K. Koo, J.A. Knoblich, Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol 21, 571–584 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  135. V. Kumar, K. Ramnarayanan, R. Sundar, N. Padmanabhan, S. Srivastava, M. Koiwa, T. Yasuda, V. Koh, K.K. Huang, S.T. Tay, S.W.T. Ho, A.L.K. Tan, T. Ishimoto, G. Kim, A. Shabbir, Q. Chen, B. Zhang, S. Xu, K.P. Lam, H.Y.J. Lum, M. Teh, W.P. Yong, J.B.Y. So, P. Tan, Single-cell atlas of Lineage States, Tumor Microenvironment, and subtype-specific expression programs in gastric Cancer. Cancer Discov 12, 670–691 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  136. J. Ding, N. Sharon, Z. Bar-Joseph, Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet 23, 355–368 (2022)

    CAS  PubMed  Google Scholar 

  137. X. Wei, S. Fu, H. Li, Y. Liu, S. Wang, W. Feng, Y. Yang, X. Liu, Y.Y. Zeng, M. Cheng, Y. Lai, X. Qiu, L. Wu, N. Zhang, Y. Jiang, J. Xu, X. Su, C. Peng, L. Han, W.P. Lou, C. Liu, Y. Yuan, K. Ma, T. Yang, X. Pan, S. Gao, A. Chen, M.A. Esteban, H. Yang, J. Wang, G. Fan, L. Liu, L. Chen, X. Xu, J.F. Fei, Y. Gu, Single-cell Stereo-seq Reveals Induced Progenitor Cells Involved in Axolotl Brain Regeneration. Science 377, (2022). eabp9444

  138. B. Liu, Z. Jing, X. Zhang, Y. Chen, S. Mao, R. Kaundal, Y. Zou, G. Wei, Y. Zang, X. Wang, W. Lin, M. Di, Y. Sun, Q. Chen, Y. Li, J. Xia, J. Sun, C.P. Lin, X. Huang, T. Chi, Large-scale multiplexed mosaic CRISPR perturbation in the whole organism. Cell 185, 3008–3024.e3016 (2022)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members in the laboratory for helpful discussions on the manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1105300 to Bin Wang), National Natural Science Foundation of China (NSFC Nos. 81822032, 91959111 and 81872027 to Bin Wang, 81902931 to Junyu Xiang), Natural Science Foundation of Chongqing (No. CSTC2019JCYJJQX0027 to Bin Wang, cstc2021jcyj-msxmX0340 to Qin Liu), Funding from the Jin Feng laboratory to Bin Wang, and Funding from the Army Medical University (Nos. 2019CXLCA001, 2018XLC2023, and 2019XQY19 to Bin Wang. 2019XQN16 to Qin Liu). Its contents represent the view(s) of the author(s) and do not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

Meng Liu wrote the manuscript draft, designed and drawn all the figures. Meng Liu, Qin Liu, and Qiang Zou collected all the reference and made the tables. Jinyang Li and Zhaole Chu provided technical assistance. Junyu Xiang, Wei-Qing Chen, Zhi-Feng Miao, Bin Wang discussed and amended the manuscript. Bin Wang, Wei-Qing Chen, and Zhi-Feng Miao supervised the whole process. Bin Wang and Zhi-Feng Miao edited the manuscript and approved the submission. All the authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Wei-Qing Chen, Zhi-Feng Miao or Bin Wang.

Ethics declarations

Ethical approval

This study was approved by the Medical Ethics Committee of Army Medical University.

Competing interest

The authors have declared no potential conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, Q., Zou, Q. et al. The composition and roles of gastric stem cells in epithelial homeostasis, regeneration, and tumorigenesis. Cell Oncol. 46, 867–883 (2023). https://doi.org/10.1007/s13402-023-00802-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00802-z

Keywords

Navigation