Skip to main content

Advertisement

Log in

The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Introduction

Ceramide synthases (CERSes) are also known longevity assurance (LASS) genes. CERSes play important roles in the regulation of cancer progression. The CERS family is expressed in a variety of human tumours and is involved in tumorigenesis. They are closely associated with the progression of liver, breast, cervical, ovarian, colorectal, head and neck squamous cell, gastric, lung, prostate, oesophageal, pancreatic and blood cancers. CERSes play diverse and important roles in the regulation of cell survival, proliferation, apoptosis, migration, invasion, and drug resistance. The differential expression of CERSes in tumour and nontumour cells and survival analysis of cancer patients suggest that some CERSes could be used as potential prognostic markers. They are also important potential targets for cancer therapy.

Methods

In this review, we summarize the available evidence on the inhibitory or promotive roles of CERSes in the progression of many cancers. Furthermore, we summarize the identified upstream and downstream molecular mechanisms that may regulate the function of CERSes in cancer settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

4EBP1:

4E-binding protein 1

4NQO:

4-nitroquinoline 1-oxide

ABCB1:

ATP binding cassette subfamily B member 1

AICAR:

Aminoimidazole-4-carboxamide riboside

AMPK:

AMP-activated protein kinase

ASGR1:

Asialoglycoprotein receptor 1

ATF4:

Activating transcription factor 4

Bax:

Bcl-2-associated x

Bcl-2:

B-cell lymphoma 2

BIP:

Binding immunoglobulin protein

cAMP:

Cyclic adenosine monophosphate

Caspase-3:

Cysteinyl aspartate-specific proteinase-3

CDase:

Ceramidase

CDK1:

Cyclin-dependent kinase 1

CERSes:

Ceramide synthases

CHOP:

CEBP-homologous protein

Compound C:

6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a]-pyrimidine

DISC:

Death-inducing signalling complex

Drp1:

Dynamin-related protein 1

ECM:

Extracellular matrix

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinases

FADD:

Fas-associated protein with death domain

FOXP3:

Forkhead box P3

GBC:

Gallbladder cancer

GCS:

Glucosylceramide synthase

GLUT1:

Glucose transporter type 1

GPER1:

G protein-coupled oestrogen receptor 1

GRP78:

Glucose-regulated protein 78

HCC:

Hepatocellular carcinoma

HDAC1:

Histone deacetylases 1

HK:

Hexokinase

HNSCC:

Head and neck squamous cell carcinoma

HOX:

Homeobox

IκB:

Inhibitory kB

JAK2:

Janus kinase 2

LASS:

Longevity assurance

LC3B-II:

Microtubule-associated protein 1 light chain 3 beta lipidation

MAPK:

Mitogen-activated protein kinase

MCL:

Mantle cell lymphoma

MCT1:

Monocarboxylate transporter 1

MDM2:

Murine double minute 2

MDR:

Multidrug resistant

MFN2:

Mitofusin 2

MRP1:

Multidrug resistance protein 1

NF-κB:

Nuclear factor-κB

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

OSCC:

Oral squamous cell carcinoma

PDAC:

Pancreatic ductal adenocarcinoma

PDT:

Photodynamic therapy

PFK1:

Phosphofructokinase 1

PI3K:

Phosphatidylinositol 3-kinase

PIP4K2C:

Phosphatidylinositol-5-phosphate-4-kinase type-2 gamma

PKB/AKT:

Protein kinase B

PKCζ:

Protein kinase Cζ

p-mTORC:

p-mammalian target of rapamycin complex

RAC1:

Ras-related C3 botulinum toxin substrate 1

R-MA:

R (+)-methanandamide

ROS:

Reactive oxygen species

RT‒qPCR:

Real-time quantitative polymerase chain reaction

S1P:

Sphingosine 1-phosphate

SK1:

Sphingosine kinase 1

SMases:

Sphingomyelinases

SOAT1:

Sterol O-acyltransferase 1

STAT3:

Signal transducer and activator of transcription 3

T-ALL:

T-cell acute lymphoblastic leukaemia

TANK:

TRAF family member associated NF-κB activator

TAZ:

Tafazzin

TLC:

TRAM-LAG1-CLN8

TMSG1:

Tumour metastasis suppressor gene

VEGFA:

Vascular endothelial growth factor A

VM-26:

Teniposide

WT:

Wild-type

XBP1:

X-box binding protein 1

YAP:

Yes-associated protein

References

  1. J.C. Jiang, P.A. Kirchman, M. Zagulski, J. Hunt, S.M. Jazwinski, Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res. 8, 1259–1272 (1998)

    CAS  PubMed  Google Scholar 

  2. H. Pan, W.X. Qin, K.K. Huo, D.F. Wan, Y. Yu, Z.G. Xu, Q.D. Hu, K.T. Gu, X.M. Zhou, H.Q. Jiang, P.P. Zhang, Y. Huang, Y.Y. Li, J.R. Gu, Cloning, mapping, and characterization of a human homologue of the yeast longevity assurance gene LAG1. Genomics 77, 58–64 (2001)

  3. Y. Mizutani, A. Kihara, Y. Igarashi, LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro) ceramide synthase with relatively broad substrate specificity. Biochem. J. 398, 531–538 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. C. Riebeling, J.C. Allegood, E. Wang, A.H. Merrill Jr., A.H. Futerman, Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278, 43452–43459 (2003)

    CAS  PubMed  Google Scholar 

  5. S. Lahiri, A.H. Futerman, LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J. Biol. Chem. 280, 33735–33738 (2005)

    CAS  PubMed  Google Scholar 

  6. Y. Mizutani, A. Kihara, Y. Igarashi, Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem. J. 390, 263–271 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. K. Kitatani, J. Idkowiak-Baldys, Y.A. Hannun, The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. 20, 1010–1018 (2008)

    CAS  PubMed  Google Scholar 

  8. G. Tettamanti, Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj. J. 20, 301–317 (2004)

    CAS  PubMed  Google Scholar 

  9. M. Sugiura, K. Kono, H. Liu, T. Shimizugawa, H. Minekura, S. Spiegel, T. Kohama, Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J. Biol. Chem. 277, 23294–23300 (2002)

    CAS  PubMed  Google Scholar 

  10. F.G. Tafesse, P. Ternes, J.C. Holthuis, The multigenic sphingomyelin synthase family. J. Biol. Chem. 281, 29421–29425 (2006)

    CAS  PubMed  Google Scholar 

  11. A. Mesika, S. Ben-Dor, E.L. Laviad, A.H. Futerman, A new functional motif in hox domain-containing ceramide synthases: identification of a novel region flanking the hox and TLC domains essential for activity. J. Biol. Chem. 282, 27366–27373 (2007)

    CAS  PubMed  Google Scholar 

  12. D. Görlich, T.A. Rapoport, Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615–630 (1993)

    PubMed  Google Scholar 

  13. R. Jennemann, M. Rabionet, K. Gorgas, S. Epstein, A. Dalpke, U. Rothermel, A. Bayerle, F. van der Hoeven, S. Imgrund, J. Kirsch, W. Nickel, K. Willecke, H. Riezman, H.J. Gröne, R. Sandhoff. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586–608 (2012)

    CAS  PubMed  Google Scholar 

  14. J.W. Park, W.J. Park, A.H. Futerman, Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671–681 (2014)

    CAS  PubMed  Google Scholar 

  15. R. Tidhar, I.D. Zelnik, G. Volpert, S. Ben-Dor, S. Kelly, A.H. Merrill Jr., A.H. Futerman, Eleven residues determine the acyl chain specificity of ceramide synthases. J. Biol. Chem. 293, 9912–9921 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. J.L. Kim, S. Ben-Dor, E. Rosenfeld-Gur, A.H. Futerman, A novel C-terminal DxRSDxE motif in ceramide synthases involved in dimer formation. J. Biol. Chem. 298, 101517 (2022)

    CAS  PubMed  Google Scholar 

  17. B.J. Pettus, M. Baes, M. Busman, Y.A. Hannun, P.P. Van Veldhoven, Mass spectrometric analysis of ceramide perturbations in brain and fibroblasts of mice and human patients with peroxisomal disorders. Rapid Commun. Mass. Spectrom. 18, 1569–1574 (2004)

    CAS  PubMed  Google Scholar 

  18. M. Levy, A.H. Futerman, Mammalian ceramide synthases. IUBMB Life 62, 347–356 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. B. Wang, G. Shi, Y. Fu, X. Xu, Cloning and characterization of a LASS1-GDF1 transcript in rat cerebral cortex: conservation of a bicistronic structure. DNA Seq. 18, 92–103 (2007)

    CAS  PubMed  Google Scholar 

  20. M. Meyers-Needham, S. Ponnusamy, S. Gencer, W. Jiang, R.J. Thomas, C.E. Senkal, B. Ogretmen, Concerted functions of HDAC1 and microRNA-574-5p repress alternatively spliced ceramide synthase 1 expression in human cancer cells. EMBO Mol. Med. 4, 78–92 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Z. Yang, G. Yan, L. Zheng, W. Gu, F. Liu, W. Chen, X. Cui, Y. Wang, Y. Yang, X. Chen, Y. Fu, X. Xu, YKT6, as a potential predictor of prognosis and immunotherapy response for oral squamous cell carcinoma, is related to cell invasion, metastasis, and CD8+ T cell infiltration. Oncoimmunology. 10, 1938890 (2021)

  22. C.S. Lin, A.B. de Oliveira Santos, E.L. Silva, L.L. de Matos, R.A. Moyses, M.A. Kulcsar, F.R. Pinto, L.G. Brandão, C.R. Cernea, Tumor volume as an independent predictive factor of worse survival in patients with oral cavity squamous cell carcinoma. Head Neck 39, 960–964 (2017)

    PubMed  Google Scholar 

  23. W. Chen, C. Wu, Y. Chen, Y. Guo, L. Qiu, Z. Liu, H. Sun, S. Chen, Z. An, Z. Zhang, Y. Li, L. Li, Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress. Int. J. Oral Sci. 13, 10 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Wang, J. Zhang, D. Ma, X. Li, The potential role of CERS1 in autophagy through PI3K/AKT signaling pathway in hypophysoma. Technol. Cancer Res. Treat. 19, 1533033820977536 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. C.E. Senkal, S. Ponnusamy, M.J. Rossi, J. Bialewski, D. Sinha, J.C. Jiang, S.M. Jazwinski, Y.A. Hannun, B. Ogretmen, Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol. Cancer Ther. 6, 712–722 (2007)

    CAS  PubMed  Google Scholar 

  26. N. Mizushima, B. Levine, A.M. Cuervo, D.J. Klionsky, Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. R.D. Sentelle, C.E. Senkal, W. Jiang, S. Ponnusamy, S. Gencer, S.P. Selvam, V.K. Ramshesh, Y.K. Peterson, J.J. Lemasters, Z.M. Szulc, J. Bielawski, B. Ogretmen, Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831–838 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. C.E. Senkal, S. Ponnusamy, J. Bielawski, Y.A. Hannun, B. Ogretmen, Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J. 24, 296–308 (2010)

    PubMed  PubMed Central  Google Scholar 

  29. F. Lan, Q. Qing, Q. Pan, M. Hu, H. Yu, X. Yue, Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell. Oncol. 41, 25–33 (2018)

    CAS  Google Scholar 

  30. X. Cheng, Z. Ren, Z. Liu, X. Sun, R. Qian, C. Cao, B. Liu, J. Wang, H. Wang, Y. Guo, Y. Gao, Cysteine cathepsin C: a novel potential biomarker for the diagnosis and prognosis of glioma. Cancer Cell. Int. 22, 53 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. N. Vanni, F. Fruscione, E. Ferlazzo, P. Striano, A. Robbiano, M. Traverso, T. Sander, A. Falace, E. Gazzerro, P. Bramanti, J. Bielawski, A. Fassio, C. Minetti, P. Genton, F. Zara, Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann. Neurol. 76, 206–212 (2014)

    CAS  PubMed  Google Scholar 

  32. Z. Wang, L. Wen, F. Zhu, Y. Wang, Q. Xie, Z. Chen, Y. Li, Overexpression of ceramide synthase 1 increases C18-ceramide and leads to lethal autophagy in human glioma. Oncotarget 8, 104022–104036 (2017)

    PubMed  PubMed Central  Google Scholar 

  33. K. Liu, Y. Shi, X. Guo, S. Wang, Y. Ouyang, M. Hao, D. Liu, L. Qiao, N. Li, J. Zheng, D. Chen, CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell. Death Dis. 5, e1323 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. W.H. Zhou, H. Fang, Q. Wu, X. Wang, R. Liu, F. Li, J. Xiao, L. Yuan, Z. Zhou, J. Ma, L. Wang, W. Zhao, H. You, J. Ju, J. Feng, C. Chen, Ilamycin E, a natural product of marine actinomycete, inhibits triple-negative breast cancer partially through ER stress-CHOP-Bcl-2. Int. J. Biol. Sci. 15, 1723–1732 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA Cancer J. Clin 72, 7–33 (2022)

    PubMed  Google Scholar 

  36. Y. Wang, N. Wu, N. Jiang, Autophagy provides a conceptual therapeutic framework for bone metastasis from prostate cancer. Cell. Death Dis. 12, 909 (2021)

    PubMed  PubMed Central  Google Scholar 

  37. Z.W. Zhao, L.L. Yang, J.S. Ji, L.Y. Zheng, S.J. Fang, J.L. Wang, Effects and mechanism of itraconazole on prostate cancer PC-3 cell apoptosis. Zhonghua Yi Xue Za Zhi 96, 3160–3163 (2016)

    CAS  PubMed  Google Scholar 

  38. H.X. Li, J. Zeng, K. Shen, PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch. Gynecol. Obstet. 290, 1067–1078 (2014)

    CAS  PubMed  Google Scholar 

  39. J. Min, A. Mesika, M. Sivaguru, P.P. Van Veldhoven, H. Alexander, A.H. Futerman, S. Alexander, (Dihydro) ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol. Cancer Res. 5, 801–812 (2007)

    CAS  PubMed  Google Scholar 

  40. Y. Baran, A. Salas, C.E. Senkal, U. Gunduz, J. Bielawski, L.M. Obeid, B. Ogretmen, Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J. Biol. Chem. 282, 10922–10934 (2007)

    CAS  PubMed  Google Scholar 

  41. J. Khaled, M. Kopsida, H. Lennernäs, F. Heindryckx, Drug resistance and endoplasmic reticulum stress in hepatocellular carcinoma. Cells 11, 632 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. A. Camgoz, E.B. Gencer, A.U. Ural, Y. Baran, Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance. Leuk. Lymphoma 54, 1279–1287 (2013)

    CAS  PubMed  Google Scholar 

  43. T. Sassa, T. Hirayama, A. Kihara, Enzyme activities of the ceramide synthases CERS2-6 are regulated by phosphorylation in the C-terminal region. J. Biol. Chem. 291, 7477–7487 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. R. Gopal, K. Selvarasu, P.P. Pandian, K. Ganesan, Integrative transcriptome analysis of liver cancer profiles identifies upstream regulators and clinical significance of ACSM3 gene expression. Cell. Oncol. 40, 219–233 (2017)

    CAS  Google Scholar 

  45. A. Bickert, P. Kern, M. Van Uelft, S. Herresthal, T. Ulas, K. Gutbrod, B. Breiden, J. Degen, K. Sandhoff, J.L. Schultze, P. Dörmann, D. Hartmann, R. Bauer, K. Willecke, Inactivation of ceramide synthase 2 catalytic activity in mice affects transcription of genes involved in lipid metabolism and cell division. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1863, 734–749 (2018)

    CAS  PubMed  Google Scholar 

  46. Y. Yang, X. Yang, L. Li, G. Yang, X. Ouyang, J. Xiang, T. Zhang, X. Min, LASS2 inhibits proliferation and induces apoptosis in HepG2 cells by affecting mitochondrial dynamics, the cell cycle and the nuclear factor-κB pathways. Oncol. Rep. 41, 3005–3014 (2019)

    CAS  PubMed  Google Scholar 

  47. D. Gu, H. Jin, G. Jin, C. Wang, N. Wang, F. Hu, Q. Luo, W. Chu, M. Yao, W. Qin, The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity. Cancer Lett. 379, 107–116 (2016)

    CAS  PubMed  Google Scholar 

  48. T. Pani, K. Rajput, A. Kar, U. Dasgupta, Alternative splicing of CERS2 promotes cell proliferation and migration in luminal B subtype breast cancer cells. Oncoscience 8, 50–52 (2021)

    PubMed  PubMed Central  Google Scholar 

  49. R. Erez-Roman, R. Pienik, A.H. Futerman, Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochem. Biophys. Res. Commun. 391, 219–223 (2010)

    CAS  PubMed  Google Scholar 

  50. S.H. Fan, Y.Y. Wang, J. Lu, Y.L. Zheng, D.M. Wu, Z.F. Zhang, Q. Shan, B. Hu, M.Q. Li, W. Cheng, CERS2 suppresses tumor cell invasion and is associated with decreased V-ATPase and MMP-2/MMP-9 activities in breast cancer. J. Cell. Biochem. 116, 502–513 (2015)

    CAS  PubMed  Google Scholar 

  51. S. Fan, Y. Niu, N. Tan, Z. Wu, Y. Wang, H. You, R. Ke, J. Song, Q. Shen, W. Wang, G. Yao, H. Shu, H. Lin, M. Yao, Z. Zhang, J. Gu, W. Qin, LASS2 enhances chemosensitivity of breast cancer by counteracting acidic tumor microenvironment through inhibiting activity of V-ATPase proton pump. Oncogene 32, 1682–1690 (2013)

    CAS  PubMed  Google Scholar 

  52. S. Liu, X. Chen, T. Lin, Lymphatic metastasis of bladder cancer: molecular mechanisms, diagnosis and targeted therapy. Cancer Lett. 505, 13–23 (2021)

    CAS  PubMed  Google Scholar 

  53. H. He, S. Wu, K. Ai, R. Xu, Z. Zhong, Y. Wang, L. Zhang, X. Zhao, X. Zhu, LncRNA ZNF503-AS1 acts as a tumor suppressor in bladder cancer by up-regulating Ca2+ concentration via transcription factor GATA6. Cell. Oncol. 44, 219–233 (2021)

    CAS  Google Scholar 

  54. A. Homami, F. Ghazi, MicroRNAs as biomarkers associated with bladder cancer. Med. J. Islam Repub. Iran. 30, 475 (2016)

    PubMed  PubMed Central  Google Scholar 

  55. H. Wang, J. Wang, Y. Zuo, M. Ding, R. Yan, D. Yang, C. Ke, Expression and prognostic significance of a new tumor metastasis suppressor gene LASS2 in human bladder carcinoma. Med. Oncol. 29, 1921–1927 (2012)

    CAS  PubMed  Google Scholar 

  56. L. Huang, T. Luan, Y. Chen, X. Bao, Y. Huang, S. Fu, H. Wang, J. Wang, LASS2 regulates invasion and chemoresistance via ERK/Drp1 modulated mitochondrial dynamics in bladder cancer cells. J. Cancer 9, 1017–1024 (2018)

    PubMed  PubMed Central  Google Scholar 

  57. D. Witten, R. Tibshirani, S.G. Gu, A. Fire, W.O. Lui, Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol. 8, 58 (2010)

    PubMed  PubMed Central  Google Scholar 

  58. S. Fu, T. Luan, C. Jiang, Y. Huang, N. Li, H. Wang, J. Wang, MiR-3622a promotes proliferation and invasion of bladder cancer cells by downregulating LASS2. Gene 701, 23–31 (2019)

  59. T. Luan, R. Zou, L. Huang, N. Li, S. Fu, Y. Huang, H. Wang, J. Wang, Hsa-miR-3658 promotes cell proliferation, migration and invasion by effecting LASS2 in bladder cancer. Clin. Lab. 64, 515–525 (2018)

    CAS  PubMed  Google Scholar 

  60. J. Liu, H. Wang, Y. Wang, Z. Li, Y. Pan, Q. Liu, M. Yang, J. Wang, Repression of the mir-93-enhanced sensitivity of bladder carcinoma to chemotherapy involves the regulation of LASS2. Onco. Targets Ther. 9, 1813–1822 (2016)

    Google Scholar 

  61. S. Xiao, Y. Chen, T. Luan, Y. Huang, S. Fu, Y. Zuo, H. Wang, J. Wang, MicroRNA-20a targeting LASS2 promotes the proliferation, invasiveness and migration of bladder cancer. Clin. Lab. 67 (2021)

  62. J. Mesicek, H. Lee, T. Feldman, X. Jiang, A. Skobeleva, E.V. Berdyshev, A. Haimovitz-Friedman, Z. Fuks, R. Kolesnick, Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell. Signal. 22, 1300–1307 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. N. Sheng, Y.Y. Wang, Y. Xie, S.H. Chen, J. Lu, Z.F. Zhang, M.Q. Li, Q. Shan, D.M. Wu, G.H. Zheng, Y.L. Zheng, S.H. Fan, High expression of LASS2 is associated with unfavorable prognosis in patients with ovarian cancer. J. Cell. Physiol. 234, 13001–13013 (2019)

    CAS  PubMed  Google Scholar 

  64. X. Zhang, W. Sakamoto, D. Canals, M. Ishibashi, M. Matsuda, K. Nishida, M. Toyoshima, S. Shigeta, M. Taniguchi, C.E. Senkal, T. Okazaki, N. Yaegashi, Y.A. Hannun, T. Nabe, K. Kitatani, Ceramide synthase 2-C24:1-ceramide axis limits the metastatic potential of ovarian cancer cells. FASEB J. 35, e21287 (2021)

    CAS  PubMed  Google Scholar 

  65. Y. Zhang, H. Wang, T. Chen, H. Wang, X. Liang, Y. Zhang, J. Duan, S. Qian, K. Qiao, L. Zhang, Y. Liu, J. Wang, C24-Ceramide drives gallbladder cancer progression through directly targeting phosphatidylinositol 5-phosphate 4-kinase type-2 gamma to facilitate mammalian target of rapamycin signaling activation. Hepatology 73, 692–712 (2021)

    CAS  PubMed  Google Scholar 

  66. W.K. Lee, M. Maaß, A. Quach, N. Poscic, H. Prangley, E.C. Pallott, J.L. Kim, J.S. Pierce, B. Ogretmen, A.H. Futerman, F. Thévenod, Dependence of ABCB1 transporter expression and function on distinct sphingolipids generated by ceramide synthases-2 and – 6 in chemoresistant renal cancer. J. Biol. Chem. 298, 101492 (2021)

    PubMed  PubMed Central  Google Scholar 

  67. J.J.G. Marin, L. Perez-Silva, R.I.R. Macias, M. Asensio, A. Peleteiro-Vigil, A. Sanchez-Martin, C. Cives-Losada, P. Sanchon-Sanchez, B. Sanchez, E. De Blas, O. Herraez, E. Briz, Lozano, Molecular bases of mechanisms accounting for drug resistance in gastric adenocarcinoma. Cancers 12, 2116 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. N. Tang, J. Jin, Y. Deng, R.H. Ke, Q.J. Shen, S.H. Fan, W.X. Qin, LASS2 interacts with V-ATPase and inhibits cell growth of hepatocellular carcinoma. Sheng Li Xue Bao 62, 196–202 (2010)

    CAS  PubMed  Google Scholar 

  69. Y. Wang, S. Li, L. Weng, H. Du, J. Wang, X. Xu, LASS2 overexpression enhances early apoptosis of lung cancer cells through the caspasedependent pathway. Oncol. Rep. 48, 220 (2022)

    PubMed  Google Scholar 

  70. D. Hartmann, J. Lucks, S. Fuchs, S. Schiffmann, Y. Schreiber, N. Ferreirós, J. Merkens, R. Marschalek, G. Geisslinger, S. Grösch, Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int. J. Biochem. Cell. Biol. 44, 620–628 (2012)

    CAS  PubMed  Google Scholar 

  71. J. Jin, T.D. Mullen, Q. Hou, J. Bielawski, A. Bielawska, X. Zhang, L.M. Obeid, Y.A. Hannun, Y.T. Hsu, AMPK inhibitor compound C stimulates ceramide production and promotes bax redistribution and apoptosis in MCF7 breast carcinoma cells. J. Lipid Res. 50, 2389–2397 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  72. M. Rabionet, A.C. van der Spoel, C.C. Chuang, B. von Tümpling-Radosta, M. Litjens, D. Bouwmeester, C.C. Hellbusch, C. Körner, H. Wiegandt, K. Gorgas, F.M. Platt, H.J. Gröne, R. Sandhoff, Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J. Biol. Chem. 283, 13357–13369 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Y. Mizutani, A. Kihara, H. Chiba, H. Tojo, Y. Igarashi, 2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length. J. Lipid Res. 49, 2356–2364 (2008)

    CAS  PubMed  Google Scholar 

  74. K. Gustafsson, B. Sander, J. Bielawski, Y.A. Hannun, J. Flygare, Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. Mol. Cancer Res. 7, 1086–1098 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. A.H. Janneh, B. Ogretmen, Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers 14, 2183 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. D. Verlekar, S.J. Wei, H. Cho, S. Yang, M.H. Kang, Ceramide synthase-6 confers resistance to chemotherapy by binding to CD95/Fas in T-cell acute lymphoblastic leukemia. Cell. Death Dis. 9, 925 (2018)

    PubMed  PubMed Central  Google Scholar 

  77. E.L. Laviad, L. Albee, I. Pankova-Kholmyansky, S. Epstein, H. Park, A.H. Merrill Jr., A.H. Futerman, Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J. Biol. Chem. 283, 5677–5684 (2008)

    CAS  PubMed  Google Scholar 

  78. J.W. Chen, X. Li, D. Ma, T. Liu, P. Tian, C. Wu, Ceramide synthase-4 orchestrates the cell proliferation and tumor growth of liver cancer in vitro and in vivo through the nuclear factor-κB signaling pathway. Oncol. Lett. 14, 1477–1483 (2017)

    PubMed  PubMed Central  Google Scholar 

  79. M.S. Wegner, L. Gruber, N. Schömel, S. Trautmann, S. Brachtendorf, D. Fuhrmann, Y. Schreiber, C. Olesch, B. Brüne, G. Geisslinger, S. Grösch, GPER1 influences cellular homeostasis and cytostatic drug resistance via influencing long chain ceramide synthesis in breast cancer cells. Int. J. Biochem. Cell. Biol. 112, 95–106 (2019)

    CAS  PubMed  Google Scholar 

  80. A.A. de Jesus, Y. Hou, S. Brooks, L. Malle, A. Biancotto, Y. Huang, K.R. Calvo, B. Marrero, S. Moir, A.J. Oler, Z. Deng, G.A. Montealegre Sanchez, A. Ahmed, E. Allenspach, B. Arabshahi, E. Behrens, S. Benseler, L. Bezrodnik, S. Bout-Tabaku, A.C. Brescia, D. Brown, J.M. Burnham, M.S. Caldirola, R. Carrasco, A.Y. Chan, R. Cimaz, P. Dancey, J. Dare, M. DeGuzman, V. Dimitriades, I. Ferguson, P. Ferguson, L. Finn, M. Gattorno, A.A. Grom, E.P. Hanson, P.J. Hashkes, C.M. Hedrich, R. Herzog, G. Horneff, R. Jerath, E. Kessler, H. Kim, D.J. Kingsbury, R.M. Laxer, P.Y. Lee, M.A. Lee-Kirsch, L. Lewandowski, S. Li, V. Lilleby, V. Mammadova, L.N. Moorthy, G. Nasrullayeva, K.M. O’Neil, K. Onel, S. Ozen, N. Pan, P. Pillet, D.G. Piotto, M.G. Punaro, A. Reiff, A. Reinhardt, L.G. Rider, R. Rivas-Chacon, T. Ronis, A. Rösen-Wolff, J. Roth, N.M. Ruth, M. Rygg, H. Schmeling, G. Schulert, C. Scott, G. Seminario, A. Shulman, V. Sivaraman, M.B. Son, Y. Stepanovskiy, E. Stringer, S. Taber, M.T. Terreri, C. Tifft, T. Torgerson, L. Tosi, A. Van Royen-Kerkhof, T. Wampler Muskardin, S.W. Canna, R. Goldbach-Mansky, Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest. 130, 1669–1682 (2020)

  81. F.R. Greten, M. Karin, The IKK/NF-κB activation pathway-a target for prevention and treatment of cancer. Cancer Lett. 206, 193–199 (2004)

    CAS  PubMed  Google Scholar 

  82. T. Kawai, S. Akira, Signaling to NF-κB by toll-like receptors. Trends Mol. Med. 13, 460–469 (2007)

    CAS  PubMed  Google Scholar 

  83. R. Tidhar, S. Ben-Dor, E. Wang, S. Kelly, A.H. Merrill Jr., A.H. Futerman, Acyl chain specificity of ceramide synthases is determined within a region of 150 residues in the Tram-Lag-CLN8 (TLC) domain. J. Biol. Chem. 287, 3197–3206 (2012)

    CAS  PubMed  Google Scholar 

  84. Z. Xu, J. Zhou, D.M. McCoy, R.K. Mallampalli, LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J. Lipid Res. 46, 1229–1238 (2005)

    CAS  PubMed  Google Scholar 

  85. I. Becker, L. Wang-Eckhardt, A. Yaghootfam, V. Gieselmann, M. Eckhardt, Differential expression of (dihydro)ceramide synthases in mouse brain: oligodendrocyte-specific expression of CerS2/Lass2, Histochem. Cell. Biol. 129, 233–241 (2008)

    CAS  Google Scholar 

  86. S.J. Zhang, Y. Wang, L. Yuan, C. Hu, Z. Xu, X. Cheng, High expression of ceramide synthase 5 predicts a poor prognosis in gastric cancer. Transl. Cancer Res 11, 3209–3221 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  87. G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, D.E. Moller, Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  88. B.O. Schroeder, F. Bäckhed, Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016)

    CAS  PubMed  Google Scholar 

  89. O. Boulard, S. Kirchberger, D.J. Royston, K.J. Maloy, F.M. Powrie, Identification of a genetic locus controlling bacteria-driven colitis and associated cancer through effects on innate inflammation. J. Exp. Med. 209, 1309–1324 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Y. Zhu, L. Gu, X. Lin, J. Zhang, Y. Tang, X. Zhou, B. Lu, X. Lin, C. Liu, E.V. Prochownik, Y. Li, Ceramide-mediated gut dysbiosis enhances cholesterol esterification and promotes colorectal tumorigenesis in mice. JCI. Insight 7, 150607 (2022)

    Google Scholar 

  91. R. Mojakgomo, Z. Mbita, Z. Dlamini, Linking the ceramide synthases (CerSs) 4 and 5 with apoptosis, endometrial and colon cancers. Exp. Mol. Pathol. 98, 585–592 (2015)

    CAS  PubMed  Google Scholar 

  92. S. Fitzgerald, K.M. Sheehan, V. Espina, A. O’Grady, R. Cummins, D. Kenny, L. Liotta, R. O’Kennedy, E.W. Kay, G.S. Kijanka, High CerS5 expression levels associate with reduced patient survival and transition from apoptotic to autophagy signalling pathways in colorectal cancer. J. Pathol. Clin. Res. 1, 54–65 (2015)

    CAS  PubMed  Google Scholar 

  93. S. Brachtendorf, R.A. Wanger, K. Birod, D. Thomas, S. Trautmann, M.S. Wegner, D.C. Fuhrmann, B. Brüne, G. Geisslinger, S. Grösch, Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1863, 1214–1227 (2018)

    CAS  PubMed  Google Scholar 

  94. J. Lee, H. Savage, S. Maegawa, R. Ballarò, S. Pareek, B.S. Guerrouahen, V. Gopalakrishnan, K. Schadler, Exercise promotes pro-apoptotic ceramide signaling in a mouse melanoma model. Cancers 14, 4306 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. T.S. Tirodkar, P. Lu, A. Bai, M.J. Scheffel, S. Gencer, E. Garrett-Mayer, A. Bielawska, B. Ogretmen, C. Voelkel-Johnson, Expression of ceramide synthase 6 transcriptionally acid ceramidase in a c-Jun N-terminal kinase (JNK)-dependent manner. J. Biol. Chem. 290, 13157–13167 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  96. S.J. Li, Y. Wu, Y. Ding, M. Yu, Z. Ai, CerS6 regulates cisplatin resistance in oral squamous cell carcinoma by altering mitochondrial fission and autophagy. J. Cell. Physiol. 233, 9416–9425 (2018)

    CAS  PubMed  Google Scholar 

  97. R. Bassan, J.P. Bourquin, D.J. DeAngelo, S. Chiaretti, New approaches to the management of adult acute lymphoblastic leukemia. J. Clin. Oncol. 36, 3504–3519 (2018)

    CAS  Google Scholar 

  98. J.H. Song, K. Kandasamy, A.S. Kraft, ABT-737 induces expression of the death receptor 5 and sensitizes human cancer cells to TRAIL-induced apoptosis. J. Biol. Chem. 283, 25003–25013 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  99. L.E. Davis, S.C. Shalin, A.J. Tackett, Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 20, 1366–1379 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Y.Y. Tang, K. Cao, Q. Wang, J. Chen, R. Liu, S. Wang, J. Zhou, H. Xie, Silencing of CerS6 increases the invasion and glycolysis of melanoma WM35, WM451 and SK28 cell lines via increased GLUT1-induced downregulation of WNT5A. Oncol. Rep. 35, 2907–2915 (2016)

    CAS  PubMed  Google Scholar 

  101. M.H. Kim, J.W. Park, E.J. Lee, S. Kim, S.H. Shin, J.H. Ahn, Y. Jung, I. Park, W.J. Park, C16-ceramide and sphingosine 1-phosphate/S1PR2 have opposite effects on cell growth through mTOR signaling pathway regulation. Oncol. Rep. 40, 2977–2987 (2018)

    CAS  PubMed  Google Scholar 

  102. D.L. Holliday, V. Speirs, Choosing the right cell line for breast cancer research. Breast Cancer Res 13, 215 (2011)

    PubMed  PubMed Central  Google Scholar 

  103. A. Prat, J.S. Parker, O. Karginova, C. Fan, C. Livasy, J.I. Herschkowitz, X. He, C.M. Perou, Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12, R68 (2010)

    PubMed  PubMed Central  Google Scholar 

  104. E. Santos, Current approaches to gastric cancer in Peru and Mexico. Transl Gastroenterol. Hepatol. 26, 55 (2017)

    Google Scholar 

  105. Y.H. Uen, C.L. Fang, C.C. Lin, Y.C. Hseu, S.T. Hung, D.P. Sun, K.Y. Lin, Ceramide synthase 6 predicts the prognosis of human gastric cancer: it functions as an oncoprotein by dysregulating the SOCS2/JAK2/STAT3 pathway. Mol. Carcinog. 57, 1675–1689 (2018)

    CAS  PubMed  Google Scholar 

  106. G. Reiterer, A. Yen, Inhibition of the Janus kinase family increases extracellular signal-regulated kinase 1/2 phosphorylation and causes endoreduplication. Cancer Res. 66, 9083–9089 (2006)

    CAS  PubMed  Google Scholar 

  107. D. Separovic, P. Breen, N. Joseph, J. Bielawski, J.S. Pierce, E.V.A.N. Buren, T.I. Gudz, Ceramide synthase 6 knockdown suppresses apoptosis after photodynamic therapy in human head and neck squamous carcinoma cells. Anticancer Res. 32, 753–760 (2012)

    CAS  PubMed  Google Scholar 

  108. Y. Shi, C. Zhou, H. Lu, X. Cui, J. Li, S. Jiang, H. Zhang, R. Zhang, Ceramide synthase 6 predicts poor prognosis and activates the AKT/mTOR/4EBP1 pathway in high-grade serous ovarian cancer. Am. J. Transl Res. 12, 5924–5939 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  109. S. Wullschleger, R. Loewith, M.N. Hall, TOR signaling in growth and metabolism. Cell 124, 471–484 (2006)

    CAS  PubMed  Google Scholar 

  110. V. Malyla, K.R. Paudel, S.D. Shukla, C. Donovan, R. Wadhwa, S. Pickles, V. Chimankar, P. Sahu, H. Bielefeldt-Ohmann, M. Bebawy, P.M. Hansbro, K. Dua, Recent advances in experimental animal models of lung cancer. Future Med. Chem. 12, 567–570 (2020)

    CAS  PubMed  Google Scholar 

  111. H.X. Shi, A. Niimi, T. Takeuchi, K. Shiogama, Y. Mizutani, T. Kajino, K. Inada, T. Hase, T. Hatta, H. Shibata, T. Fukui, T.F. Chen-Yoshikawa, K. Nagano, T. Murate, Y. Kawamoto, S. Tomida, T. Takahashi, M. Suzuki, CEBPγ facilitates lamellipodia formation and cancer cell migration through CERS6 upregulation. Cancer Sci. 112, 2770–2780 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  112. M. Suzuki, K. Cao, S. Kato, N. Mizutani, K. Tanaka, C. Arima, M.C. Tai, N. Nakatani, K. Yanagisawa, T. Takeuchi, H. Shi, Y. Mizutani, A. Niimi, T. Taniguchi, T. Fukui, K. Yokoi, K. Wakahara, Y. Hasegawa, Y. Mizutani, S. Iwaki, S. Fujii, A. Satou, K. Tamiya-Koizumi, T. Murate, M. Kyogashima, S. Tomida, T. Takahashi, CERS6 required for cell migration and metastasis in lung cancer. J. Cell. Mol. Med. 24, 11949–11959 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  113. S. Varambally, Q. Cao, R.S. Mani, S. Shankar, X. Wang, B. Ateeq, B. Laxman, X. Cao, X. Jing, K. Ramnarayanan, J.C. Brenner, J. Yu, J.H. Kim, B. Han, P. Tan, C. Kumar-Sinha, R.J. Lonigro, N. Palanisamy, C.A. Maher, A.M. Chinnaiyan, Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Y.H. Zhu, J.H. Zheng, Q.Y. Jia, Z.H. Duan, H.F. Yao, J. Yang, Y.W. Sun, S.H. Jiang, D.J. Liu, Y.M. Huo, Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell. Oncol. (2022)

  115. D.C. Qi, X. Song, C. Xue, W. Yao, P. Shen, H. Yu, Z. Zhang, AKT1/FOXP3 axis-mediated expression of CerS6 promotes p53 mutant pancreatic tumorigenesis. Cancer Lett. 522, 105–118 (2021)

    CAS  PubMed  Google Scholar 

  116. B. Fekry, K.A. Jeffries, A. Esmaeilniakooshkghazi, Z.M. Szulc, K.J. Knagge, D.R. Kirchner, D.A. Horita, S.A. Krupenko, N.I. Krupenko, C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat. Commun. 9, 4149 (2018)

    PubMed  PubMed Central  Google Scholar 

  117. L.A. Hoeferlin, B. Fekry, B. Ogretmen, S.A. Krupenko, N.I. Krupenko, Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J. Biol. Chem. 288, 12880–12890 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  118. N. Ron-Harel, A.H. Sharpe, M.C. Haigis, Mitochondrial metabolism in T cell activation and senescence: a mini-review. Gerontology 61, 131–138 (2015)

    CAS  PubMed  Google Scholar 

  119. S. Vaena, P. Chakraborty, H.G. Lee, A.H. Janneh, M.F. Kassir, G. Beeson, Z. Hedley, A. Yalcinkaya, M.H. Sofi, H. Li, M.L. Husby, R.V. Stahelin, X.Z. Yu, S. Mehrotra, B. Ogretmen, Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor T cell response. Cell. Rep. 35, 109076 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81672731); Xuzhou Municipal Science and Technology Project (KC20106 and KC21209); “333 Project” Award of Jiangsu Province (BRA2020252); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_2580).

Author information

Authors and Affiliations

Authors

Contributions

Zhang, M.M. wrote the main manuscript text and prepared the figures. Li, Z.Y., Liu, Y.W. and Ding, X. reviewed the manuscript. Fan, S.H. and Wang, Y.Y. contributed to the conception of the review, and critical revision of the manuscript.

Corresponding authors

Correspondence to Yanyan Wang or Shaohua Fan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, Z., Liu, Y. et al. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression. Cell Oncol. 46, 825–845 (2023). https://doi.org/10.1007/s13402-023-00798-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00798-6

Keywords

Navigation