Skip to main content

Advertisement

Log in

Targeting CD43 optimizes cancer immunotherapy through reinvigorating antitumor immune response in colorectal cancer

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancer (CRC) is one of the most common malignancies worldwide, with dramatically increasing incidence and mortality for decades. However, current therapeutic strategies for CRC, including chemotherapies and immunotherapies, have only demonstrated limited efficacy. Here, we report a novel immune molecule, CD43, that can regulate the tumor immune microenvironment (TIME) and serves as a promising target for CRC immunotherapy.

Methods

The correlation of CD43 expression with CRC patient prognosis was revealed by public data analysis. CD43 knockout (KO) CRC cell lines were generated by CRISPR-Cas9 technology, and a syngenetic murine CRC model was established to investigate the in vivo function of CD43. The TIME was analyzed via immunohistochemical staining, flow cytometry and RNA-seq. Immune functions were investigated by depletion of immune subsets in vivo and T-cell functional assays in vitro, including T-cell priming, cytotoxicity, and chemotaxis experiments.

Results

In this study, we found that high expression of CD43 was correlated with poor survival of CRC patients and the limited infiltration of CD8+ T cells in human CRC tissues. Importantly, CD43 expressed on tumor cells, rather than host cells, promoted tumor progression in a syngeneic tumor model. Loss of CD43 facilitated the infiltration of immune cells and immunological memory in the TIME of CRC tumors. Mechanistically, the protumor effect of CD43 depends on T cells, thereby attenuating T-cell-mediated cytotoxicity and cDC1-mediated antigen-specific T-cell activation. Moreover, targeting CD43 synergistically improved PD-L1 blockade immunotherapy for CRC.

Conclusion

Our findings revealed that targeting tumor-intrinsic CD43 could activate the antitumor immune response and provide particular value for optimized cancer immunotherapy by regulating the TIME in CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The analyzed datasets generated during this study are available from the corresponding author upon reasonable request. The transcriptomic data are available in Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under the accession codes GSE223856.

References

  1. J.Q. Chen, W.H. Zhan, Y.L. He, J.S. Peng, J.P. Wang, S.R. Cai, J.P. Ma, Expression of heparanase gene, CD44v6, MMP-7 and nm23 protein and their relationship with the invasion and metastasis of gastric carcinomas. World J. Gastroenterol. 10, 776–782 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022)

    Article  PubMed  Google Scholar 

  3. R.M. McQuade, V. Stojanovska, J.C. Bornstein, K. Nurgali, Colorectal Cancer chemotherapy: the evolution of treatment and New Approaches. Curr. Med. Chem. 24, 1537–1557 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. E. Picard, C.P. Verschoor, G.W. Ma, G. Pawelec, Relationships between Immune Landscapes, genetic subtypes and responses to Immunotherapy in Colorectal Cancer. Front. Immunol. 11, 369 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Jiang, Z. Liu, F. Xu, X. Dong, Y. Cheng, Y. Hu, T. Gao, J. Liu, L. Yang, X. Jia, H. Qian, T. Wen, G. An, Aberrant O-glycosylation contributes to tumorigenesis in human colorectal cancer. J. Cell. Mol. Med. 22, 4875–4885 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. T. Gao, T. Du, X. Hu, X. Dong, L. Li, Y. Wang, J. Liu, L. Liu, T. Gu, T. Wen, Cosmc overexpression enhances malignancies in human colon cancer. J. Cell. Mol. Med. 24, 362–370 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. N. Very, T. Lefebvre, and I. El Yazidi-Belkoura, Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 9, 1380–1402 (2018)

    Article  PubMed  Google Scholar 

  8. C. Fernandez-Ponce, N. Geribaldi-Doldan, I. Sanchez-Gomar, R.N. Quiroz, L.A. Ibarra, L.G. Escorcia, R. Fernandez-Cisnal, G.A. Martinez, F. Garcia-Cozar, E.N. Quiroz, The role of Glycosyltransferases in Colorectal Cancer. Int. J. Mol. Sci. 22, 5822 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L.A.M. Cornelissen, A. Blanas, A. Zaal, J.C. van der Horst, L.J.W. Kruijssen, T. O’Toole, Y. van Kooyk, S.J. van Vliet, Tn Antigen expression contributes to an Immune Suppressive Microenvironment and Drives Tumor Growth in Colorectal Cancer. Front. Oncol. 10, 1622 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  10. E. Remold-O’Donnell, D.M. Kenney, R. Parkman, L. Cairns, B. Savage, F.S. Rosen, Characterization of a human lymphocyte surface sialoglycoprotein that is defective in Wiskott-Aldrich syndrome. J. Exp. Med. 159, 1705–1723 (1984)

    Article  PubMed  Google Scholar 

  11. S.R. Carlsson, M. Fukuda, Isolation and characterization of leukosialin, a major sialoglycoprotein on human leukocytes. J. Biol. Chem. 261, 12779–12786 (1986)

    Article  CAS  PubMed  Google Scholar 

  12. B. Axelsson, P. Perlmann, Persistent superphosphorylation of leukosialin (CD43) in activated T cells and in tumour cell lines. Scand. J. Immunol. 30, 539–547 (1989)

    Article  CAS  PubMed  Google Scholar 

  13. T. Moore, S. Huang, L.W. Terstappen, M. Bennett, V. Kumar, Expression of CD43 on murine and human pluripotent hematopoietic stem cells. J. Immunol. 153, 4978–4987 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. M. Wiken, P. Bjorck, B. Axelsson, P. Perlmann, Induction of CD43 expression during activation and terminal differentiation of human B cells. Scand. J. Immunol. 28, 457–464 (1988)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Rosenstein, J.K. Park, W.C. Hahn, F.S. Rosen, B.E. Bierer, S.J. Burakoff, CD43, a molecule defective in Wiskott-Aldrich syndrome, binds ICAM-1. Nature 354, 233–235 (1991)

    Article  CAS  PubMed  Google Scholar 

  16. S. Zheng, K. Huang, W. Xia, J. Shi, Q. Liu, X. Zhang, G. Li, J. Chen, T. Wang, X. Chen, A.P. Xiang, Mesenchymal stromal cells rapidly suppress TCR signaling-mediated cytokine transcription in activated T cells through the ICAM-1/CD43 Interaction. Front. Immunol. 12, 609544 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R.C. Fuhlbrigge, S.L. King, R. Sackstein, T.S. Kupper, CD43 is a ligand for E-selectin on CLA + human T cells. Blood 107, 1421–1426 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. F. Velazquez, A. Grodecki-Pena, A. Knapp, A.M. Salvador, T. Nevers, K. Croce, P. Alcaide, CD43 functions as an E-Selectin ligand for Th17 cells in Vitro and is required for Rolling on the vascular endothelium and Th17 cell recruitment during inflammation in vivo. J. Immunol. 196, 1305–1316 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. J.D. Hernandez, J.T. Nguyen, J. He, W. Wang, B. Ardman, J.M. Green, M. Fukuda, L.G. Baum, Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J. Immunol. 177, 5328–5336 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. O. Ramirez-Pliego, D.L. Escobar-Zarate, G.M. Rivera-Martinez, M.G. Cervantes-Badillo, F.R. Esquivel-Guadarrama, G. Rosas-Salgado, Y. Rosenstein, M.A. Santana, CD43 signals induce type one lineage commitment of human CD4 + T cells. BMC Immunol. 8, 30 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  21. J.L. Cannon, A. Collins, P.D. Mody, D. Balachandran, K.J. Henriksen, C.E. Smith, J. Tong, B.S. Clay, S.D. Miller, A.I. Sperling, CD43 regulates Th2 differentiation and inflammation. J. Immunol. 180, 7385–7393 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. H.F. Zhou, H. Yan, J.L. Cannon, L.E. Springer, J.M. Green, C.T. Pham, CD43-mediated IFN-gamma production by CD8 + T cells promotes abdominal aortic aneurysm in mice. J. Immunol. 190, 5078–5085 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. K.T. Fay, D.B. Chihade, C.W. Chen, N.J. Klingensmith, J.D. Lyons, K. Ramonell, Z. Liang, C.M. Coopersmith, M.L. Ford, Increased mortality in CD43-deficient mice during sepsis. PLoS One 13, e0202656 (2018)

  24. N. Manjunath, M. Correa, M. Ardman, B. Ardman, Negative regulation of T-cell adhesion and activation by CD43. Nature 377, 535–538 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. C. Fratazzi, N. Manjunath, R.D. Arbeit, C. Carini, T.A. Gerken, B. Ardman, E. Remold-O’Donnell and H.G. Remold. A macrophage invasion mechanism for mycobacteria implicating the extracellular domain of CD43. J. Exp. Med. 192, 183–192 (2000)

  26. M. Matsumoto, A. Shigeta, M. Miyasaka, T. Hirata, CD43 plays both antiadhesive and proadhesive roles in neutrophil rolling in a context-dependent manner. J. Immunol. 181, 3628–3635 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. J. Tong, E.J. Allenspach, S.M. Takahashi, P.D. Mody, C. Park, J.K. Burkhardt, A.I. Sperling, CD43 regulation of T cell activation is not through steric inhibition of T cell-APC interactions but through an intracellular mechanism. J. Exp. Med. 199, 1277–1283 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J.L. Cannon, P.D. Mody, K.M. Blaine, E.J. Chen, A.D. Nelson, L.J. Sayles, T.V. Moore, B.S. Clay, N.O. Dulin, R.A. Shilling, J.K. Burkhardt, A.I. Sperling, CD43 interaction with ezrin-radixin-moesin (ERM) proteins regulates T-cell trafficking and CD43 phosphorylation. Mol. Biol. Cell. 22, 954–963 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Sorigue, J. Junca, E. Sarrate, J. Grau, Expression of CD43 in chronic lymphoproliferative leukemias. Cytometry B Clin. Cytom. 94, 136–142 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Li, X. Tong, L. Huang, L. Li, C. Wang, C. He, S. Liu, Z. Wang, M. Xiao, X. Mao, D. Zhang, A new score including CD43 and CD180: increased diagnostic value for atypical chronic lymphocytic leukemia. Cancer Med. 10, 4387–4396 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. X.B. Ma, Y.P. Zhong, Y. Zheng, J. Jiang, Y.P. Wang, Coexpression of CD5 and CD43 predicts worse prognosis in diffuse large B-cell lymphoma. Cancer Med. 7, 4284–4295 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T.K. van den Berg, D. Nath, H.J. Ziltener, D. Vestweber, M. Fukuda, I. van Die, P.R. Crocker, Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J. Immunol. 166, 3637–3640 (2001)

    Article  PubMed  Google Scholar 

  33. S. Wisnovsky, L. Mockl, S.A. Malaker, K. Pedram, G.T. Hess, N.M. Riley, M.A. Gray, B.A.H. Smith, M.C. Bassik, W.E. Moerner, C.R. Bertozzi, Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. Proc. Natl. Acad. Sci. U S A 118, e2015024118 (2021)

  34. F.M. Tuccillo, C. Palmieri, G. Fiume, A. de Laurentiis, M. Schiavone, C. Falcone, E. Iaccino, R. Galandrini, C. Capuano, A. Santoni, F.P. D’Armiento, C. Arra, A. Barbieri, F. Dal Piaz, D. Venzon, P. Bonelli, F.M. Buonaguro, I. Scala, M. Mallardo, I. Quinto, G. Scala, Cancer-associated CD43 glycoforms as target of immunotherapy. Mol. Cancer Ther. 13, 752–762 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. K. Hasegawa, S. Tanaka, F. Fujiki, S. Morimoto, K. Nakano, H. Kinoshita, A. Okumura, Y. Fujioka, R. Urakawa, H. Nakajima, N. Tatsumi, J. Nakata, S. Takashima, S. Nishida, A. Tsuboi, Y. Oka, Y. Oji, E. Miyoshi, T. Hirata, A. Kumanogoh, H. Sugiyama, N. Hosen. Glycosylation status of CD43 protein is associated with resistance of leukemia cells to CTL-mediated cytolysis. PLoS One 11, e0152326 (2016)

  36. R.C. Wong, E. Remold-O’Donnell, D. Vercelli, J. Sancho, C. Terhorst, F. Rosen, R. Geha, T. Chatila, Signal transduction via leukocyte antigen CD43 (sialophorin). Feedback regulation by protein kinase C. J. Immunol. 144, 1455–1460 (1990)

    Article  CAS  PubMed  Google Scholar 

  37. D. Baeckstrom, Post-translational fate of a mucin-like leukocyte sialoglycoprotein (CD43) aberrantly expressed in a colon carcinoma cell line. J. Biol. Chem. 272, 11503–11509 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. D. Baeckstrom, K. Zhang, N. Asker, U. Ruetschi, M. Ek, G.C. Hansson, Expression of the leukocyte-associated sialoglycoprotein CD43 by a colon carcinoma cell line. J. Biol. Chem. 270, 13688–13692 (1995)

    Article  CAS  PubMed  Google Scholar 

  39. J. Fernandez-Rodriguez, C.X. Andersson, S. Laos, D. Baeckstrom, A. Sikut, R. Sikut, G.C. Hansson, The leukocyte antigen CD43 is expressed in different cell lines of nonhematopoietic origin. Tumour Biol. 23, 193–201 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. M. Santamaria, A. Lopez-Beltran, M. Toro, J. Pena, I.J. Molina, Specific monoclonal antibodies against leukocyte-restricted cell surface molecule CD43 react with nonhematopoietic tumor cells. Cancer Res. 56, 3526–3529 (1996)

    CAS  PubMed  Google Scholar 

  41. A. Pimenidou, L.A. Madden, K.P. Topping, K.A. Smith, J.R. Monson, J. Greenman, Novel CD43 specific phage antibodies react with early stage colorectal tumours. Oncol. Rep. 11, 327–331 (2004)

    CAS  PubMed  Google Scholar 

  42. Q. Fu, S.E. Cash, J.J. Andersen, C.R. Kennedy, D.G. Oldenburg, V.B. Zander, G.R. Foley, and C. Simon Shelley, CD43 in the nucleus and cytoplasm of lung cancer is a potential therapeutic target. Int. J. Cancer 132, 1761–1770 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. B.H. Batdorf, S.H. Kroft, P.R. Hosking, A.M. Harrington, A.C. Mackinnon, H. Olteanu, Evaluation of CD43 expression in non-hematopoietic malignancies. Ann. Diagn. Pathol. 29, 23–27 (2017)

    Article  PubMed  Google Scholar 

  44. A. Balikova, K. Jaager, J. Viil, T. Maimets, L. Kadaja-Saarepuu, Leukocyte marker CD43 promotes cell growth in co-operation with beta-catenin in non-hematopoietic cancer cells. Int. J. Oncol. 41, 299–309 (2012)

    CAS  PubMed  Google Scholar 

  45. N. Camacho-Concha, A. Olivos-Ortiz, A. Nunez-Rivera, A. Pedroza-Saavedra, L. Gutierrez-Xicotencatl, Y. Rosenstein, G. Pedraza-Alva, CD43 promotes cells transformation by preventing merlin-mediated contact inhibition of growth. PLoS One 8, e80806 (2013)

  46. B. Ardman, M.A. Sikorski, D.E. Staunton, CD43 interferes with T-lymphocyte adhesion. Proc. Natl. Acad. Sci. U S A 89, 5001–5005 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. W.S. Park, H.J. Kim, G.K. Lee, H.S. Son, Y. Bae, Anti-adhesive functions of CD43 expressed on colon carcinoma cells through the modulation of integrins. Exp. Mol. Pathol. 92, 82–89 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. D. Vega-Mendoza, A. Canas-Linares, A. Flores-Alcantar, R. Espinosa-Neira, E. Melchy-Perez, R. Vera-Estrella, C. Auvynet, Y. Rosenstein, CD43 (sialophorin) is involved in the induction of extracellular matrix remodeling and angiogenesis by lung cancer cells. J. Cell. Physiol. 236, 6643–6656 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. C. Zhong, L. Wang, S. Hu, C. Huang, Z. Xia, J. Liao, W. Yi, J. Chen, Poly(I:C) enhances the efficacy of phagocytosis checkpoint blockade immunotherapy by inducing IL-6 production. J. Leukoc. Biol. 110, 1197–1208 (2021)

    Article  CAS  PubMed  Google Scholar 

  50. F. Heigwer, G. Kerr, M. Boutros, E-CRISP: fast CRISPR target site identification. Nat. Methods 11, 122–123 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. Z. Tang, D. Davidson, R. Li, M.C. Zhong, J. Qian, J. Chen, A. Veillette, Inflammatory macrophages exploit unconventional pro-phagocytic integrins for phagocytosis and anti-tumor immunity. Cell. Rep. 37, 110111 (2021)

    Article  CAS  PubMed  Google Scholar 

  52. J. Chen, M.C. Zhong, H. Guo, D. Davidson, S. Mishel, Y. Lu, I. Rhee, L.A. Perez-Quintero, S. Zhang, M.E. Cruz-Munoz, N. Wu, D.C. Vinh, M. Sinha, V. Calderon, C.A. Lowell, J.S. Danska, A. Veillette, SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544, 493–497 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Y. Simoni, E. Becht, M. Fehlings, C.Y. Loh, S.L. Koo, K.W.W. Teng, J.P.S. Yeong, R. Nahar, T. Zhang, H. Kared, K. Duan, N. Ang, M. Poidinger, Y.Y. Lee, A. Larbi, A.J. Khng, E. Tan, C. Fu, R. Mathew, M. Teo, W.T. Lim, C.K. Toh, B.H. Ong, T. Koh, A.M. Hillmer, A. Takano, T.K.H. Lim, E.H. Tan, W. Zhai, D.S.W. Tan, I.B. Tan, E.W. Newell, Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018)

    Article  CAS  PubMed  Google Scholar 

  54. V. Brinkmann, A. Billich, T. Baumruker, P. Heining, R. Schmouder, G. Francis, S. Aradhye, P. Burtin, Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov 9, 883–897 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. G. Petrova, A. Ferrante, J. Gorski, Cross-reactivity of T cells and its role in the immune system. Crit. Rev. Immunol. 32, 349–372 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. S.H. Shrager, C. Kiel, SnapShot: APC/T cell Immune Checkpoints. Cell 183, 1142–1142.e1141 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. F.M. Tuccillo, A. de Laurentiis, C. Palmieri, G. Fiume, P. Bonelli, A. Borrelli, P. Tassone, I. Scala, F.M. Buonaguro, I. Quinto, G. Scala. Aberrant glycosylation as biomarker for cancer: focus on CD43. Biomed. Res. Int. 2014, 742831 (2014)

  58. J. Cyster, C. Somoza, N. Killeen, A.F. Williams, Protein sequence and gene structure for mouse leukosialin (CD43), a T lymphocyte mucin without introns in the coding sequence. Eur. J. Immunol. 20, 875–881 (1990)

    Article  CAS  PubMed  Google Scholar 

  59. H. Shi, J. Lan, J. Yang, Mechanisms of resistance to checkpoint blockade therapy. Adv. Exp. Med. Biol. 1248, 83–117 (2020)

    Article  CAS  PubMed  Google Scholar 

  60. G. Bogle, P.R. Dunbar, T cell responses in lymph nodes. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 107–116 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (2020YFA0509400 and 2019YFA0110300), National Natural Science Foundation of China (82150117, 82071745 and 82101329), Science and Technology Program of Guangzhou (202002030069), Guangdong project (2019QN01Y212), Guangdong Basic and Applied Basic Research Foundation of China (2021A1515012620), Guangzhou Science and Technology Project of China (202201010993 and 105068559019) and a Grant from MOE Key Laboratory of Gene Function and Regulation.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and Y.Y.L. wrote the original manuscript. Y.Y.L. and X.Y.W. conceived and conducted most of experiments and data curation. Y.L. participated in the data analysis of the clinical samples. X.M.W., J.L., Y.Z.W. and H.H. assisted with some animal experiments. J.C. and W.Y. supervised the research and authored the final manuscript. All authors reviewed the manuscript. We thank Figdraw (https://www.figdraw.com) for expert assistance in the pattern drawing.

Corresponding authors

Correspondence to Wei Yi or Jun Chen.

Ethics declarations

Competing interests

There is no conflict of interest in our article.

Ethical approval

All of the animal experiments were performed with the approval of the Institutional Animal Care and Use Committee, Sun Yat-Sen University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi-yi Li and Xin-yu Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yy., Wang, Xy., Li, Y. et al. Targeting CD43 optimizes cancer immunotherapy through reinvigorating antitumor immune response in colorectal cancer. Cell Oncol. 46, 777–791 (2023). https://doi.org/10.1007/s13402-023-00794-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00794-w

Keywords

Navigation