Skip to main content

Advertisement

Log in

Increased SPRY1 expression activates NF-κB signaling and promotes pancreatic cancer progression by recruiting neutrophils and macrophages through CXCL12-CXCR4 axis

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate, in which about 90% of patients harbor somatic oncogenic point mutations in KRAS. SPRY family genes have been recognized as crucial negative regulators of Ras/Raf/ERK signaling. Here, we investigate the expression and role of SPRY proteins in PDAC.

Methods

Expression of SPRY genes in human and mice PDAC was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and by immunohistochemistry analysis. Gain-of-function, loss-of-function of Spry1 and orthotopic xenograft model were adopted to investigate the function of Spry1 in mice PDAC. Bioinformatics analysis, transwell and flowcytometry analysis were used to identify the effects of SPRY1 on immune cells. Co-immunoprecipitation and K-ras4B G12V overexpression were used to identify molecular mechanism.

Results

SPRY1 expression was remarkably increased in PDAC tissues and positively associated with poor prognosis of PDAC patients. SPRY1 knockdown suppressed tumor growth in mice. SPRY1 was found to promote CXCL12 expression and facilitate neutrophil and macrophage infiltration via CXCL12-CXCR4 axis. Pharmacological inhibition of CXCL12-CXCR4 largely abrogated the oncogenic functions of SPRY1 by suppressing neutrophil and macrophage infiltration. Mechanistically, SPRY1 interacted with ubiquitin carboxy-terminal hydrolase L1 to induce activation of nuclear factor κB signaling and ultimately increase CXCL12 expression. Moreover, SPRY1 transcription was dependent on KRAS mutation and was mediated by MAPK-ERK signaling.

Conclusion

High expression of SPRY1 can function as an oncogene in PDAC by promoting cancer-associated inflammation. Targeting SPRY1 might be an important approach for designing new strategy of tumor therapy.

Highlights

The expression of SPRY1 is increased during malignant transformation and predicts a poor prognosis in PDAC.

SPRY1 promotes neutrophil and macrophage recruitment via CXCL12-CXCR4 axis.

SPRY1 modulates CXCL12 expression through promoting nuclear factor κB signaling activation via interaction with ubiquitin carboxy-terminal hydrolase L1.

SPRY1 transcription is dependent on KRAS mutation and mediated by MAPK-ERK signaling in PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data are available within the Article, Supplementary Information, or available from the authors upon request. Source data are provided with this paper.

References

  1. J.M. Mason, D.J. Morrison, M.A. Basson, J.D. Licht, Trends Cell Biol. 16, 45–54 (2006). https://doi.org/10.1016/j.tcb.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  2. S. Masoumi-Moghaddam, A. Amini, D.L. Morris, Cancer Metastasis Rev. 33, 695–720 (2014). https://doi.org/10.1007/s10555-014-9497-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. K. Bundschu, U. Walter, K. Schuh, BioEssays. 29, 897–907 (2007). https://doi.org/10.1002/bies.20632

    Article  CAS  PubMed  Google Scholar 

  4. K. Ozaki, R. Kadomoto, K. Asato, S. Tanimura, N. Itoh, M. Kohno, Biochem. Biophys. Res. Commun. 285, 1084–1088 (2001). https://doi.org/10.1006/bbrc.2001.5295

    Article  CAS  PubMed  Google Scholar 

  5. Z. Koledova, X. Zhang, C. Streuli, R.B. Clarke, O.D. Klein, Z. Werb, P. Lu, Proc. Natl. Acad. Sci. U. S. A. 113, E5731–E5740 (2016). https://doi.org/10.1073/pnas.1611532113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A.K. Perl, I. Hokuto, M.A. Impagnatiello, G. Christofori, J.A. Whitsett, Dev. Biol. 258, 154–168 (2003). https://doi.org/10.1016/s0012-1606(03)00106-4

    Article  CAS  PubMed  Google Scholar 

  7. V. Sigurdsson, S. Ingthorsson, B. Hilmarsdottir, S.M. Gustafsdottir, S.R. Franzdottir, A.J. Arason, E. Steingrimsson, M.K. Magnusson, T. Gudjonsson, PLoS One 8, e60798 (2013). https://doi.org/10.1371/journal.pone.0060798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. K.B. Sylvestersen, P.L. Herrera, P. Serup, C. Rescan, Gene Expr. Patterns 11, 105–111 (2011). https://doi.org/10.1016/j.gep.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  9. T. Kawazoe, K. Taniguchi, Cancer Sci. 110, 1525–1535 (2019). https://doi.org/10.1111/cas.13999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T.L. Lo, P. Yusoff, C.W. Fong, K. Guo, B.J. McCaw, W.A. Phillips, H. Yang, E.S. Wong, H.F. Leong, Q. Zeng, T.C. Putti, G.R. Guy, Cancer Res. 64, 6127–6136 (2004). https://doi.org/10.1158/0008-5472.CAN-04-1207

    Article  CAS  PubMed  Google Scholar 

  11. M.A. Tennis, M.M. Van Scoyk, S.V. Freeman, K.M. Vandervest, R.A. Nemenoff, R.A. Winn, Mol. Cancer Res.: MCR 8, 833–843 (2010). https://doi.org/10.1158/1541-7786.MCR-09-0400

    Article  CAS  PubMed  Google Scholar 

  12. S.A. Lee, C. Ho, R. Roy, C. Kosinski, M.A. Patil, A.D. Tward, J. Fridlyand, X. Chen, Hepatology 47, 1200–1210 (2008). https://doi.org/10.1002/hep.22169

    Article  CAS  PubMed  Google Scholar 

  13. P. Lito, B.D. Mets, S. Kleff, S. O'Reilly, V.M. Maher, J.J. McCormick, J. Biol. Chem. 283, 2002–2009 (2008). https://doi.org/10.1074/jbc.M709046200

    Article  CAS  PubMed  Google Scholar 

  14. C. Holgren, U. Dougherty, F. Edwin, D. Cerasi, I. Taylor, A. Fichera, L. Joseph, M. Bissonnette, S. Khare, Oncogene 29, 5241–5253 (2010). https://doi.org/10.1038/onc.2010.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Bloethner, B. Chen, K. Hemminki, J. Muller-Berghaus, S. Ugurel, D. Schadendorf, R. Kumar, Carcinogenesis 26, 1224–1232 (2005). https://doi.org/10.1093/carcin/bgi066

    Article  CAS  PubMed  Google Scholar 

  16. K.M. Mann, H. Ying, J. Juan, N.A. Jenkins, N.G. Copeland, Pharmacol. Ther. 168, 29–42 (2016). https://doi.org/10.1016/j.pharmthera.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  17. T.J. Grant, K. Hua, A. Singh, Prog. Mol. Biol. Transl. Sci. 144, 241–275 (2016). https://doi.org/10.1016/bs.pmbts.2016.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Vivian, A.A. Rao, F.A. Nothaft, C. Ketchum, J. Armstrong, A. Novak, J. Pfeil, J. Narkizian, A.D. Deran, A. Musselman-Brown, H. Schmidt, P. Amstutz, B. Craft, M. Goldman, K. Rosenbloom, M. Cline, B. O'Connor, M. Hanna, C. Birger, et al., Nat. Biotechnol. 35, 314–316 (2017). https://doi.org/10.1038/nbt.3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Yang, A. Kumar, A.E. Vilgelm, S.C. Chen, G.D. Ayers, S.V. Novitskiy, S. Joyce, A. Richmond, Cancer Immunol. Res. 6, 1186–1198 (2018). https://doi.org/10.1158/2326-6066.CIR-18-0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Schernberg, P. Blanchard, C. Chargari, E. Deutsch, Acta Oncol. 56, 1522–1530 (2017). https://doi.org/10.1080/0284186X.2017.1348623

    Article  CAS  PubMed  Google Scholar 

  21. Z. Zhang, N. Liu, X. Chen, F. Zhang, T. Kong, X. Tang, Q. Yang, W. Chen, X. Xiong, X. Chen, Cell Biol. Int. 45, 2107–2117 (2021). https://doi.org/10.1002/cbin.11662

    Article  CAS  PubMed  Google Scholar 

  22. B. Montico, F. Colizzi, G. Giurato, A. Rizzo, A. Salvati, L. Baboci, D. Benedetti, E. Pivetta, A. Covre, M.D. Bo, A. Weisz, A. Steffan, M. Maio, L. Sigalotti, E. Fratta, Cell Death Dis. 11, 392 (2020). https://doi.org/10.1038/s41419-020-2585-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Q. He, H. Jing, L. Liaw, L. Gower, C. Vary, S. Hua, X. Yang, Sci. Rep. 6, 23216 (2016). https://doi.org/10.1038/srep23216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Q. Zhang, T. Wei, K. Shim, K. Wright, K. Xu, H.L. Palka-Hamblin, A. Jurkevich, S. Khare, Oncogene 35, 3151–3162 (2016). https://doi.org/10.1038/onc.2015.365

    Article  CAS  PubMed  Google Scholar 

  25. G. Schaaf, M. Hamdi, D. Zwijnenburg, A. Lakeman, D. Geerts, R. Versteeg, M. Kool, Cancer Res. 70, 762–771 (2010). https://doi.org/10.1158/0008-5472.CAN-09-2532

    Article  CAS  PubMed  Google Scholar 

  26. Y. Xiao, M. Cong, J. Li, D. He, Q. Wu, P. Tian, Y. Wang, S. Yang, C. Liang, Y. Liang, J. Wen, Y. Liu, W. Luo, X. Lv, Y. He, D.D. Cheng, T. Zhou, W. Zhao, P. Zhang, et al., Cancer Cell 39, 423–437 e427 (2021). https://doi.org/10.1016/j.ccell.2020.12.012

    Article  CAS  PubMed  Google Scholar 

  27. F. Mollinedo, Trends Immunol. 40, 228–242 (2019). https://doi.org/10.1016/j.it.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  28. M. Huber, C.U. Brehm, T.M. Gress, M. Buchholz, B. Alashkar Alhamwe, E.P. von Strandmann, E.P. Slater, J.W. Bartsch, C. Bauer, M. Lauth, Int. J. Mol. Sci. 21 (2020). https://doi.org/10.3390/ijms21197307

  29. B.A. Teicher, S.P. Fricker, Clin. Cancer Res. 16, 2927–2931 (2010). https://doi.org/10.1158/1078-0432.CCR-09-2329

    Article  CAS  PubMed  Google Scholar 

  30. Z. Peng, C. Liu, A.R. Victor, D.Y. Cao, L.C. Veiras, E.A. Bernstein, Z. Khan, J.F. Giani, X. Cui, K.E. Bernstein, D. Okwan-Duodu, Oncoimmunology 10, 1870811 (2021). https://doi.org/10.1080/2162402X.2020.1870811

    Article  PubMed  PubMed Central  Google Scholar 

  31. R.V. Sionov, Z.G. Fridlender, Z. Granot, Cancer Microenviron. 8, 125–158 (2015). https://doi.org/10.1007/s12307-014-0147-5

    Article  CAS  PubMed  Google Scholar 

  32. A. Macia, M. Vaquero, M. Gou-Fabregas, E. Castelblanco, J.M. Valdivielso, C. Anerillas, D. Mauricio, X. Matias-Guiu, J. Ribera, M. Encinas, Cell Death Differ. 21, 333–343 (2014). https://doi.org/10.1038/cdd.2013.161

    Article  CAS  PubMed  Google Scholar 

  33. S.H. Chiou, P. Shahi, R.T. Wagner, H. Hu, N. Lapteva, M. Seethammagari, S.C. Sun, J.M. Levitt, D.M. Spencer, EMBO Rep. 12, 971–979 (2011). https://doi.org/10.1038/embor.2011.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Xiongjun Wang for technical support.

Funding

This study was supported by the National Natural Science Foundation of China (No. 31801212 to LY). Beijing Natural Science Foundation (No. 5232003 to LW).

Author information

Authors and Affiliations

Authors

Contributions

LY, JY and LW conceived the project; LY and JY designed experiments, interpreted data in the manuscript and wrote the manuscript; LW performed bioinformatics analyses, data analysis and wrote the manuscript; XL, JZ, LY and TS performed cell and animal experiments; JY provided clinical specimens and made clinical pathology evaluations; XL, JZ and ZD performed western blotting analysis and IHC analysis; OYY, YG and QW reviewed the manuscript and discussed the data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianyu Yang, Lulu Wang or Linli Yao.

Ethics declarations

Ethical approval

All procedures related to patients were carried out in accordance with International Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS). The study was approved by the Research Ethics Committee of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University. All the mouse experiments were approved by the Research Ethics Committee of Shanghai Jiao Tong University.

Consent for publication

All authors had agreed to publish this manuscript.

Competing interests

The authors have declared that no conflict of interest exists.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Li, X., Zheng, J. et al. Increased SPRY1 expression activates NF-κB signaling and promotes pancreatic cancer progression by recruiting neutrophils and macrophages through CXCL12-CXCR4 axis. Cell Oncol. 46, 969–985 (2023). https://doi.org/10.1007/s13402-023-00791-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00791-z

Keywords

Navigation