Skip to main content

Advertisement

Log in

E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Human malignancies are composed of heterogeneous subpopulations of cancer cells with phenotypic and functional diversity. Among them, a unique subset of cancer stem cells (CSCs) has both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties. As such, CSCs are promising cellular targets for effective cancer therapy. At the molecular level, hyper-activation of multiple stemness regulatory signaling pathways and downstream transcription factors play critical roles in controlling CSCs establishment and maintenance. To regulate CSC properties, these stemness pathways are controlled by post-translational modifications including, but not limited to phosphorylation, acetylation, methylation, and ubiquitination.

Conclusion

In this review, we focus on E3 ubiquitin ligases and their roles and mechanisms in regulating essential hallmarks of CSCs, such as self-renewal, invasion and metastasis, metabolic reprogramming, immune evasion, and therapeutic resistance. Moreover, we discuss emerging therapeutic approaches to eliminate CSCs through targeting E3 ubiquitin ligases by chemical inhibitors and proteolysis-targeting chimera (PROTACs) which are currently under development at the discovery, preclinical, and clinical stages. Several outstanding issues such as roles for E3 ubiquitin ligases in heterogeneity and phenotypical/functional evolution of CSCs remain to be studied under pathologically and clinically relevant conditions. With the rapid application of functional genomic and proteomic approaches at single cell, spatiotemporal, and even single molecule levels, we anticipate that more specific and precise functions of E3 ubiquitin ligases will be delineated in dictating CSC properties. Rational design and proper translation of these mechanistic understandings may lead to novel therapeutic modalities for cancer procession medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. E. Batlle, H. Clevers, Cancer stem cells revisited. Nat. Med. 23(10), 1124–1134 (2017). https://doi.org/10.1038/nm.4409

    Article  CAS  PubMed  Google Scholar 

  2. D. Hanahan, Hallmarks of Cancer: New dimensions. Cancer Discov. 12(1), 31–46 (2022). https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  3. Z.J. Lei, J. Wang, H.L. Xiao, Y. Guo, T. Wang, Q. Li, L. Liu, X. Luo, L.L. Fan, L. Lin, C.Y. Mao, S.N. Wang, Y.L. Wei, C.H. Lan, J. Jiang, X.J. Yang, P.D. Liu, D.F. Chen, B. Wang, Lysine-specific demethylase 1 promotes the stemness and chemoresistance of Lgr5(+) liver cancer initiating cells by suppressing negative regulators of β-catenin signaling. Oncogene 34(24), 3188–3198 (2015). https://doi.org/10.1038/onc.2015.129

    Article  CAS  PubMed  Google Scholar 

  4. Z. Wang, B. Wang, Y. Shi, C. Xu, H.L. Xiao, L.N. Ma, S.L. Xu, L. Yang, Q.L. Wang, W.Q. Dang, W. Cui, S.C. Yu, Y.F. Ping, Y.H. Cui, H.F. Kung, C. Qian, X. Zhang, X.W. Bian, Oncogenic miR-20a and miR-106a enhance the invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene 34(11), 1407–1419 (2015). https://doi.org/10.1038/onc.2014.75

    Article  CAS  PubMed  Google Scholar 

  5. L. Deng, T. Meng, L. Chen, W. Wei, P. Wang, The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal 5(1), 11 (2020). https://doi.org/10.1038/s41392-020-0107-0

    Article  CAS  Google Scholar 

  6. D. Komander, M. Rape, The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012). https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  7. T.E.T. Mevissen, D. Komander, Mechanisms of Deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017). https://doi.org/10.1146/annurev-biochem-061516-044916

    Article  CAS  PubMed  Google Scholar 

  8. T. Wang, H. Wu, S. Liu, Z. Lei, Z. Qin, L. Wen, K. Liu, X. Wang, Y. Guo, Q. Liu, L. Liu, J. Wang, L. Lin, C. Mao, X. Zhu, H. Xiao, X. Bian, D. Chen, C. Xu, B. Wang, SMYD3 controls a Wnt-responsive epigenetic switch for ASCL2 activation and cancer stem cell maintenance. Cancer Lett. 430, 11–24 (2018). https://doi.org/10.1016/j.canlet.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  9. T. Wang, Z.Y. Qin, L.Z. Wen, Y. Guo, Q. Liu, Z.J. Lei, W. Pan, K.J. Liu, X.W. Wang, S.J. Lai, W.J. Sun, Y.L. Wei, L. Liu, L. Guo, Y.Q. Chen, J. Wang, H.L. Xiao, X.W. Bian, D.F. Chen, B. Wang, Epigenetic restriction of hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells. Cell Death Differ. 25(12), 2086–2100 (2018). https://doi.org/10.1038/s41418-018-0095-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. L. Yang, P. Shi, G. Zhao, J. Xu, W. Peng, J. Zhang, G. Zhang, X. Wang, Z. Dong, F. Chen, H. Cui, Targeting cancer stem cell pathways for cancer therapy. Sig. Transduct. Target. Ther. 5(1), 8 (2020). https://doi.org/10.1038/s41392-020-0110-5

    Article  CAS  Google Scholar 

  11. J.A. Clara, C. Monge, Y. Yang, N. Takebe, Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat. Rev. Clin. Oncol. 17(4), 204–232 (2020). https://doi.org/10.1038/s41571-019-0293-2

    Article  PubMed  Google Scholar 

  12. B. Wang, Z. Jie, D. Joo, A. Ordureau, P. Liu, W. Gan, J. Guo, J. Zhang, B.J. North, X. Dai, X. Cheng, X. Bian, L. Zhang, J.W. Harper, S.C. Sun, W. Wei, TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 545(7654), 365–369 (2017). https://doi.org/10.1038/nature22344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Strikoudis, M. Guillamot, I. Aifantis, Regulation of stem cell function by protein ubiquitylation. EMBO Rep. 15(4), 365–382 (2014). https://doi.org/10.1002/embr.201338373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. N. Cai, M. Li, J. Qu, G.H. Liu, J.C. Izpisua Belmonte, Post-translational modulation of pluripotency. J. Mol. Cell Biol. 4(4), 262–265 (2012). https://doi.org/10.1093/jmcb/mjs031

    Article  CAS  PubMed  Google Scholar 

  15. Y. Kong, Z. Wang, M. Huang, Z. Zhou, Y. Li, H. Miao, X. Wan, J. Huang, X. Mao, C. Chen, CUL7 promotes cancer cell survival through promoting Caspase-8 ubiquitination. Int. J. Cancer 145(5), 1371–1381 (2019). https://doi.org/10.1002/ijc.32239

    Article  CAS  PubMed  Google Scholar 

  16. L. Song, Z.Q. Luo, Post-translational regulation of ubiquitin signaling. J. Cell Biol. 218(6), 1776–1786 (2019). https://doi.org/10.1083/jcb.201902074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Haq, B. Suresh, S. Ramakrishna, Deubiquitylating enzymes as cancer stem cell therapeutics. Biochimica et biophysica acta Rev. Cancer 1869(1), 1–10 (2018). https://doi.org/10.1016/j.bbcan.2017.10.004

    Article  CAS  Google Scholar 

  18. S.A. Abdul Rehman, Y.A. Kristariyanto, S.Y. Choi, P.J. Nkosi, S. Weidlich, K. Labib, K. Hofmann, Y. Kulathu, MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63(1), 146–155 (2016). https://doi.org/10.1016/j.molcel.2016.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M.A. Basar, D.B. Beck, A. Werner, Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ. 28(2), 538–556 (2021). https://doi.org/10.1038/s41418-020-00697-5

    Article  CAS  PubMed  Google Scholar 

  20. F.E. Morreale, H. Walden, Types of ubiquitin ligases. Cell 165(1), 248–248.e1 (2016). https://doi.org/10.1016/j.cell.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  21. N. Zheng, N. Shabek, Ubiquitin ligases: Structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017). https://doi.org/10.1146/annurev-biochem-060815-014922

    Article  CAS  PubMed  Google Scholar 

  22. D. Rotin, S. Kumar, Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10(6), 398–409 (2009). https://doi.org/10.1038/nrm2690

    Article  CAS  PubMed  Google Scholar 

  23. S. Singh, J. Ng, J. Sivaraman, Exploring the “Other” subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol. Ther. 224, (2021). https://doi.org/10.1016/j.pharmthera.2021.107809

  24. M.Y. Ryu, S.K. Cho, Y. Hong, J. Kim, J.H. Kim, G.M. Kim, Y.J. Chen, E. Knoch, B.L. Møller, W.T. Kim, M.F. Lyngkjær, S.W. Yang, Classification of barley U-box E3 ligases and their expression patterns in response to drought and pathogen stresses. BMC Genomics 20(1), 326 (2019). https://doi.org/10.1186/s12864-019-5696-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. K.K. Dove, R.E. Klevit, RING-between-RING E3 ligases: Emerging themes amid the variations. J. Mol. Biol. 429(22), 3363–3375 (2017). https://doi.org/10.1016/j.jmb.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. P. Wang, X. Dai, W. Jiang, Y. Li, W. Wei, RBR E3 ubiquitin ligases in tumorigenesis. Semin. Cancer Biol. 67(Pt 2), 131–144 (2020). https://doi.org/10.1016/j.semcancer.2020.05.002

    Article  CAS  PubMed  Google Scholar 

  27. J. Low, W. Blosser, M. Dowless, L. Ricci-Vitiani, R. Pallini, R. de Maria, L. Stancato, Knockdown of ubiquitin ligases in glioblastoma cancer stem cells leads to cell death and differentiation. J. Biomol. Screen. 17(2), 152–162 (2012). https://doi.org/10.1177/1087057111422565

    Article  CAS  PubMed  Google Scholar 

  28. M. Quiroga, A. Rodríguez-Alonso, G. Alfonsín, J.J.E. Rodríguez, S.M. Breijo, V. Chantada, A. Figueroa, Protein degradation by E3 ubiquitin ligases in Cancer stem cells. Cancers 14(4), 990 (2022). https://doi.org/10.3390/cancers14040990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. D. Senft, J. Qi, Z.A. Ronai, Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18(2), 69–88 (2018). https://doi.org/10.1038/nrc.2017.105

    Article  CAS  PubMed  Google Scholar 

  30. S. Hume, C.P. Grou, P. Lascaux, V. D'Angiolella, A.J. Legrand, K. Ramadan, G.L. Dianov, The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat. Commun. 12(1), 6959 (2021). https://doi.org/10.1038/s41467-021-27124-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Nowosad, P. Jeannot, C. Callot, J. Creff, R.T. Perchey, C. Joffre, P. Codogno, S. Manenti, A. Besson, p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth. Nat. Cell Biol. 22(9), 1076–1090 (2020). https://doi.org/10.1038/s41556-020-0554-4

    Article  CAS  PubMed  Google Scholar 

  32. J. Deng, X. Bai, X. Feng, J. Ni, J. Beretov, P. Graham, Y. Li, Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 19(1), 618 (2019). https://doi.org/10.1186/s12885-019-5824-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C.H. Chan, C.F. Li, W.L. Yang, Y. Gao, S.W. Lee, Z. Feng, H.Y. Huang, K.K.C. Tsai, L.G. Flores, Y. Shao, J.D. Hazle, D. Yu, W. Wei, D. Sarbassov, M.C. Hung, K.I. Nakayama, H.K. Lin, The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, Herceptin sensitivity, and tumorigenesis. Cell 151(4), 913–914 (2012). https://doi.org/10.1016/j.cell.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  34. W.L. Yang, J. Wang, C.H. Chan, S.W. Lee, A.D. Campos, B. Lamothe, L. Hur, B.C. Grabiner, X. Lin, B.G. Darnay, H.K. Lin, The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science (New York, N.Y.) 325(5944), 1134–1138 (2009). https://doi.org/10.1126/science.1175065

    Article  CAS  PubMed  Google Scholar 

  35. C.H. Chan, J.K. Morrow, C.F. Li, Y. Gao, G. Jin, A. Moten, L.J. Stagg, J.E. Ladbury, Z. Cai, D. Xu, C.J. Logothetis, M.C. Hung, S. Zhang, H.K. Lin, Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154(3), 556–568 (2013). https://doi.org/10.1016/j.cell.2013.06.048

    Article  CAS  PubMed  Google Scholar 

  36. C.H. Yeh, M. Bellon, C. Nicot, FBXW7: A critical tumor suppressor of human cancers. Mol. Cancer 17(1), 115 (2018). https://doi.org/10.1186/s12943-018-0857-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. L. Reavie, S.M. Buckley, E. Loizou, S. Takeishi, B. Aranda-Orgilles, D. Ndiaye-Lobry, O. Abdel-Wahab, S. Ibrahim, K.I. Nakayama, I. Aifantis, Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 23(3), 362–375 (2013). https://doi.org/10.1016/j.ccr.2013.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Zhao, X. Xiong, Y. Sun, Cullin-RING ligase 5: Functional characterization and its role in human cancers. Semin. Cancer Biol. 67(Pt 2), 61–79 (2020). https://doi.org/10.1016/j.semcancer.2020.04.003

    Article  CAS  PubMed  Google Scholar 

  39. X. Hong, H.T. Nguyen, Q. Chen, R. Zhang, Z. Hagman, P.M. Voorhoeve, S.M. Cohen, Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J. 33(21), 2447–2457 (2014). https://doi.org/10.15252/embj.201489385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. B. Cui, L. Gong, M. Chen, Y. Zhang, H. Yuan, J. Qin, D. Gao, CUL5-SOCS6 complex regulates mTORC2 function by targeting Sin1 for degradation. Cell Discov. 5, 52 (2019). https://doi.org/10.1038/s41421-019-0118-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. T. Yoshizumi, A. Kubo, H. Murata, M. Shinonaga, H. Kanno, BC-box motif in SOCS6 induces differentiation of epidermal stem cells into GABAnergic neurons. Int. J. Mol. Sci. 21(14), 4947 (2020). https://doi.org/10.3390/ijms21144947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. C. Dominguez-Brauer, R. Khatun, A.J. Elia, K.L. Thu, P. Ramachandran, S.P. Baniasadi, Z. Hao, L.D. Jones, J. Haight, Y. Sheng, T.W. Mak, E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling. Proc. Natl. Acad. Sci. U. S. A. 114(7), E1148–E1157 (2017). https://doi.org/10.1073/pnas.1621355114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. K.B. Myant, P. Cammareri, M.C. Hodder, J. Wills, A. Von Kriegsheim, B. Győrffy, M. Rashid, S. Polo, E. Maspero, L. Vaughan, B. Gurung, E. Barry, A. Malliri, F. Camargo, D.J. Adams, A. Iavarone, A. Lasorella, O.J. Sansom, HUWE1 is a critical colonic tumour suppressor gene that prevents MYC signalling, DNA damage accumulation and tumour initiation. EMBO Mol. Med. 9(2), 181–197 (2017). https://doi.org/10.15252/emmm.201606684

    Article  CAS  PubMed  Google Scholar 

  44. J. Zhang, M. Chen, Y. Zhu, X. Dai, F. Dang, J. Ren, S. Ren, Y.V. Shulga, F. Beca, W. Gan, F. Wu, Y.M. Lin, X. Zhou, J.A. DeCaprio, A.H. Beck, K.P. Lu, J. Huang, C. Zhao, Y. Sun, X. Gao, … W. Wei, SPOP promotes Nanog destruction to suppress stem cell traits and prostate Cancer progression. Dev. Cell. 48(3), 329–344.e5 (2019). https://doi.org/10.1016/j.devcel.2018.11.035

  45. X. Wang, J. Jin, F. Wan, L. Zhao, H. Chu, C. Chen, G. Liao, J. Liu, Y. Yu, H. Teng, L. Fang, C. Jiang, W. Pan, X. Xie, J. Li, X. Lu, X. Jiang, X. Ge, D. Ye, P. Wang, AMPK promotes SPOP-mediated NANOG degradation to regulate prostate Cancer cell Stemness. Dev. Cell 48(3), 345–360.e7 (2019). https://doi.org/10.1016/j.devcel.2018.11.033

    Article  CAS  PubMed  Google Scholar 

  46. P. Tan, Y. Xu, Y. Du, L. Wu, B. Guo, S. Huang, J. Zhu, B. Li, F. Lin, L. Yao, SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 10(11), 794 (2019). https://doi.org/10.1038/s41419-019-2017-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. X. Dai, W. Gan, X. Li, S. Wang, W. Zhang, L. Huang, S. Liu, Q. Zhong, J. Guo, J. Zhang, T. Chen, K. Shimizu, F. Beca, M. Blattner, D. Vasudevan, D.L. Buckley, J. Qi, L. Buser, P. Liu, H. Inuzuka, … W. Wei, Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of Na. Nat. Med. 23(9), 1063–1071 (2017). https://doi.org/10.1038/nm.4378

  48. X. Dai, Z. Wang, W. Wei, SPOP-mediated degradation of BRD4 dictates cellular sensitivity to BET inhibitors. Cell Cycle (Georgetown, Tex) 16(24), 2326–2329 (2017). https://doi.org/10.1080/15384101.2017.1388973

    Article  CAS  PubMed  Google Scholar 

  49. P. Zhang, D. Wang, Y. Zhao, S. Ren, K. Gao, Z. Ye, S. Wang, C.W. Pan, Y. Zhu, Y. Yan, Y. Yang, D. Wu, Y. He, J. Zhang, D. Lu, X. Liu, L. Yu, S. Zhao, Y. Li, D. Lin, … H. Huang, Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat. Med. 23(9), 1055–1062 (2017). https://doi.org/10.1038/nm.4379

  50. L.G. Ju, Y. Zhu, Q.Y. Long, X.J. Li, X. Lin, S.B. Tang, L. Yin, Y. Xiao, X.H. Wang, L. Li, L. Zhang, M. Wu, SPOP suppresses prostate cancer through regulation of CYCLIN E1 stability. Cell Death Differ. 26(6), 1156–1168 (2019). https://doi.org/10.1038/s41418-018-0198-0

    Article  CAS  PubMed  Google Scholar 

  51. O.A. Guryanova, Q. Wu, L. Cheng, J.D. Lathia, Z. Huang, J. Yang, J. MacSwords, C.E. Eyler, R.E. McLendon, J.M. Heddleston, W. Shou, D. Hambardzumyan, J. Lee, A.B. Hjelmeland, A.E. Sloan, M. Bredel, G.R. Stark, J.N. Rich, S. Bao, Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19(4), 498–511 (2011). https://doi.org/10.1016/j.ccr.2011.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. C. Zhang, S. Mukherjee, C. Tucker-Burden, J.L. Ross, M.J. Chau, J. Kong, D.J. Brat, TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol. Oncol. 11(3), 280–294 (2017). https://doi.org/10.1002/1878-0261.12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. J. Yao, T. Xu, T. Tian, X. Fu, W. Wang, S. Li, T. Shi, A. Suo, Z. Ruan, H. Guo, Y. Yao, Tripartite motif 16 suppresses breast cancer stem cell properties through regulation of Gli-1 degradation via the ubiquitin-proteasome pathway. Oncol. Rep. 35(2), 1204–1212 (2016). https://doi.org/10.3892/or.2015.4437

    Article  CAS  PubMed  Google Scholar 

  54. P. Czerwińska, P.K. Shah, K. Tomczak, M. Klimczak, S. Mazurek, B. Sozańska, P. Biecek, K. Korski, V. Filas, A. Mackiewicz, J.N. Andersen, M. Wiznerowicz, TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget 8(1), 863–882 (2017). https://doi.org/10.18632/oncotarget.13273

    Article  PubMed  Google Scholar 

  55. P. Czerwińska, S. Mazurek, M. Wiznerowicz, The complexity of TRIM28 contribution to cancer. J. Biomed. Sci. 24(1), 63 (2017). https://doi.org/10.1186/s12929-017-0374-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. S. Wiszniak, S. Kabbara, R. Lumb, M. Scherer, G. Secker, N. Harvey, S. Kumar, Q. Schwarz, The ubiquitin ligase Nedd4 regulates craniofacial development by promoting cranial neural crest cell survival and stem-cell like properties. Dev. Biol. 383(2), 186–200 (2013). https://doi.org/10.1016/j.ydbio.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  57. L.C. Trotman, X. Wang, A. Alimonti, Z. Chen, J. Teruya-Feldstein, H. Yang, N.P. Pavletich, B.S. Carver, C. Cordon-Cardo, H. Erdjument-Bromage, P. Tempst, S.G. Chi, H.J. Kim, T. Misteli, X. Jiang, P.P. Pandolfi, Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128(1), 141–156 (2007). https://doi.org/10.1016/j.cell.2006.11.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. M. Yue, Z. Yun, S. Li, G. Yan, Z. Kang, NEDD4 triggers FOXA1 ubiquitination and promotes colon cancer progression under microRNA-340-5p suppression and ATF1 upregulation. RNA Biol. 18(11), 1981–1995 (2021). https://doi.org/10.1080/15476286.2021.1885232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. C. Lu, C. Thoeni, A. Connor, H. Kawabe, S. Gallinger, D. Rotin, Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene 35(45), 5839–5849 (2016). https://doi.org/10.1038/onc.2016.125

    Article  CAS  PubMed  Google Scholar 

  60. L. Novellasdemunt, A. Kucharska, C. Jamieson, M. Prange-Barczynska, A. Baulies, P. Antas, J. van der Vaart, H. Gehart, M.M. Maurice, V.S. Li, NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor. EMBO J. 39(3), e102771 (2020). https://doi.org/10.15252/embj.2019102771

    Article  CAS  PubMed  Google Scholar 

  61. J. Chen, A. Mitra, S. Li, S. Song, B.N. Nguyen, J.S. Chen, J.H. Shin, N.R. Gough, P. Lin, V. Obias, A.R. He, Z. Yao, T.M. Malta, H. Noushmehr, P.S. Latham, X. Su, A. Rashid, B. Mishra, R.C. Wu, L. Mishra, Targeting the E3 ubiquitin ligase PJA1 enhances tumor-suppressing TGFβ signaling. Cancer Res. 80(9), 1819–1832 (2020). https://doi.org/10.1158/0008-5472.CAN-19-3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. J. Chen, Z.X. Yao, J.S. Chen, Y.J. Gi, N.M. Muñoz, S. Kundra, H.F. Herlong, Y.S. Jeong, A. Goltsov, K. Ohshiro, N.A. Mistry, J. Zhang, X. Su, S. Choufani, A. Mitra, S. Li, B. Mishra, J. White, A. Rashid, A.Y. Wang, … L. Mishra, TGF-β/β2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome. J. Clin. Investig. 126(2), 527–542 (2016). https://doi.org/10.1172/JCI80937

  63. J. Gu, W. Mao, W. Ren, F. Xu, Q. Zhu, C. Lu, Z. Lin, Z. Zhang, Y. Chu, R. Liu, D. Ge, Ubiquitin-protein ligase E3C maintains non-small-cell lung cancer stemness by targeting AHNAK-p53 complex. Cancer Lett. 443, 125–134 (2019). https://doi.org/10.1016/j.canlet.2018.11.029

    Article  CAS  PubMed  Google Scholar 

  64. F. Yang, Y. Xing, Y. Li, X. Chen, J. Jiang, Z. Ai, Y. Wei, Monoubiquitination of Cancer stem cell marker CD133 at lysine 848 regulates its secretion and promotes cell migration. Mol. Cell. Biol. 38(15), e00024–e00018 (2018). https://doi.org/10.1128/MCB.00024-18

    Article  PubMed  PubMed Central  Google Scholar 

  65. M. Lin, J. Pan, Q. Chen, Z. Xu, X. Lin, C. Shi, Overexpression of FOXA1 inhibits cell proliferation and EMT of human gastric cancer AGS cells. Gene 642, 145–151 (2018). https://doi.org/10.1016/j.gene.2017.11.023

    Article  CAS  PubMed  Google Scholar 

  66. H.E. Hsia, R. Kumar, R. Luca, M. Takeda, J. Courchet, J. Nakashima, S. Wu, S. Goebbels, W. An, B.J. Eickholt, F. Polleux, D. Rotin, H. Wu, M.J. Rossner, C. Bagni, J.S. Rhee, N. Brose, H. Kawabe, Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth. Proc. Natl. Acad. Sci. U. S. A. 111(36), 13205–13210 (2014). https://doi.org/10.1073/pnas.1400737111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A. Porčnik, M. Novak, B. Breznik, B. Majc, B. Hrastar, N. Šamec, A. Zottel, I. Jovčevska, M. Vittori, A. Rotter, R. Komel, T. Lah Turnšek, TRIM28 selective Nanobody reduces glioblastoma stem cell invasion. Molecules (Basel, Switzerland) 26(17), 5141 (2021). https://doi.org/10.3390/molecules26175141

    Article  CAS  PubMed  Google Scholar 

  68. Y. Zhang, X. Zhang, M. Ye, P. Jing, J. Xiong, Z. Han, J. Kong, M. Li, X. Lai, N. Chang, J. Zhang, J. Zhang, FBW7 loss promotes epithelial-to-mesenchymal transition in non-small cell lung cancer through the stabilization of Snail protein. Cancer Lett. 419, 75–83 (2018). https://doi.org/10.1016/j.canlet.2018.01.047

    Article  CAS  PubMed  Google Scholar 

  69. Y. Wang, Y. Liu, J. Lu, P. Zhang, Y. Wang, Y. Xu, Z. Wang, J.H. Mao, G. Wei, Rapamycin inhibits FBXW7 loss-induced epithelial-mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells. Biochem. Biophys. Res. Commun. 434(2), 352–356 (2013). https://doi.org/10.1016/j.bbrc.2013.03.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. P. Gulhati, K.A. Bowen, J. Liu, P.D. Stevens, P.G. Rychahou, M. Chen, E.Y. Lee, H.L. Weiss, K.L. O'Connor, T. Gao, B.M. Evers, mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71(9), 3246–3256 (2011). https://doi.org/10.1158/0008-5472.CAN-10-4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A.B. D'Assoro, T. Liu, C. Quatraro, A. Amato, M. Opyrchal, A. Leontovich, Y. Ikeda, S. Ohmine, W. Lingle, V. Suman, J. Ecsedy, I. Iankov, A. Di Leonardo, J. Ayers-Inglers, A. Degnim, D. Billadeau, J. McCubrey, J. Ingle, J.L. Salisbury, E. Galanis, The mitotic kinase Aurora--a promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα(+) breast cancer cells. Oncogene 33(5), 599–610 (2014). https://doi.org/10.1038/onc.2012.628

    Article  CAS  PubMed  Google Scholar 

  72. J.H. Wald, J. Hatakeyama, I. Printsev, A. Cuevas, W.H.D. Fry, M.J. Saldana, K. VanderVorst, A. Rowson-Hodel, J.M. Angelastro, C. Sweeney, K.L. Carraway, Suppression of planar cell polarity signaling and migration in glioblastoma by Nrdp1-mediated Dvl polyubiquitination. Oncogene 36(36), 5158–5167 (2017). https://doi.org/10.1038/onc.2017.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. C.Y. Wei, M.X. Zhu, Y.W. Yang, P.F. Zhang, X. Yang, R. Peng, C. Gao, J.C. Lu, L. Wang, X.Y. Deng, N.H. Lu, F.Z. Qi, J.Y. Gu, Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J. Hematol. Oncol. 12(1), 21 (2019). https://doi.org/10.1186/s13045-019-0711-z

    Article  PubMed  PubMed Central  Google Scholar 

  74. Y. Jin, X. Zhao, Q. Zhang, Y. Zhang, X. Fu, X. Hu, Y. Wan, Cancer-associated mutation abolishes the impact of TRIM21 on the invasion of breast cancer cells. Int. J. Biol. Macromol. 142, 782–789 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.019

    Article  CAS  PubMed  Google Scholar 

  75. C. Jiao, T. Meng, C. Zhou, X. Wang, P. Wang, M. Lu, X. Tan, Q. Wei, X. Ge, J. Jin, TGF-β signaling regulates SPOP expression and promotes prostate cancer cell stemness. Aging 12(9), 7747–7760 (2020). https://doi.org/10.18632/aging.103085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. P. Ekambaram, J.L. Lee, N.E. Hubel, D. Hu, S. Yerneni, P.G. Campbell, N. Pollock, L.R. Klei, V.J. Concel, P.C. Delekta, A.M. Chinnaiyan, S.A. Tomlins, D.R. Rhodes, N. Priedigkeit, A.V. Lee, S. Oesterreich, L.M. McAllister-Lucas, P.C. Lucas, The CARMA3-Bcl10-MALT1 signalosome drives NFκB activation and promotes aggressiveness in angiotensin II receptor-positive breast Cancer. Cancer Res. 78(5), 1225–1240 (2018). https://doi.org/10.1158/0008-5472.CAN-17-1089

    Article  CAS  PubMed  Google Scholar 

  77. Y.F. Huang, Z. Zhang, M. Zhang, Y.S. Chen, J. Song, P.F. Hou, H.M. Yong, J.N. Zheng, J. Bai, CUL1 promotes breast cancer metastasis through regulating EZH2-induced the autocrine expression of the cytokines CXCL8 and IL11. Cell Death Dis. 10(1), 2 (2018). https://doi.org/10.1038/s41419-018-1258-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. J. Liu, C. Zhang, Y. Zhao, X. Yue, H. Wu, S. Huang, J. Chen, K. Tomsky, H. Xie, C.A. Khella, M.L. Gatza, D. Xia, J. Gao, E. White, B.G. Haffty, W. Hu, Z. Feng, Parkin targets HIF-1α for ubiquitination and degradation to inhibit breast tumor progression. Nat. Commun. 8(1), 1823 (2017). https://doi.org/10.1038/s41467-017-01947-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. N.N. Pavlova, C.B. Thompson, The emerging hallmarks of Cancer metabolism. Cell Metab. 23(1), 27–47 (2016). https://doi.org/10.1016/j.cmet.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. E.J. Kim, S.H. Kim, X. Jin, X. Jin, H. Kim, KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc. Cell Death Differ. 24(4), 649–659 (2017). https://doi.org/10.1038/cdd.2016.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. V.B. Pillai, N.R. Sundaresan, M.P. Gupta, Regulation of Akt signaling by sirtuins: Its implication in cardiac hypertrophy and aging. Circ. Res. 114(2), 368–378 (2014). https://doi.org/10.1161/CIRCRESAHA.113.300536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. X. Jin, Y. Pan, L. Wang, L. Zhang, R. Ravichandran, P.R. Potts, J. Jiang, H. Wu, H. Huang, MAGE-TRIM28 complex promotes the Warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation. Oncogenesis 6(4), e312 (2017). https://doi.org/10.1038/oncsis.2017.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Y. Hou, F. Moreau, K. Chadee, PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat. Commun. 3, 1300 (2012). https://doi.org/10.1038/ncomms2270

    Article  CAS  PubMed  Google Scholar 

  84. Z. Zhao, D. Xu, Z. Wang, L. Wang, R. Han, Z. Wang, L. Liao, Y. Chen, Hepatic PPARα function is controlled by polyubiquitination and proteasome-mediated degradation through the coordinated actions of PAQR3 and HUWE1. Hepatology (Baltimore, Md) 68(1), 289–303 (2018). https://doi.org/10.1002/hep.29786

    Article  CAS  PubMed  Google Scholar 

  85. Y. Shang, J. He, Y. Wang, Q. Feng, Y. Zhang, J. Guo, J. Li, S. Li, Y. Wang, G. Yan, F. Ren, Y. Shi, J. Xu, N. Zeps, Y. Zhai, D. He, Z. Chang, CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma. Oncogene 36(29), 4191–4200 (2017). https://doi.org/10.1038/onc.2017.31

    Article  CAS  PubMed  Google Scholar 

  86. S. Amin, P. Yang, Z. Li, Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochimica et biophysica acta. Rev. Cancer 1871(2), 331–341 (2019). https://doi.org/10.1016/j.bbcan.2019.02.003

    Article  CAS  Google Scholar 

  87. J. Schödel, S. Grampp, E.R. Maher, H. Moch, P.J. Ratcliffe, P. Russo, D.R. Mole, Hypoxia, hypoxia-inducible transcription factors, and renal Cancer. Eur. Urol. 69(4), 646–657 (2016). https://doi.org/10.1016/j.eururo.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  88. S. Ros, A. Schulze, Glycolysis back in the limelight: Systemic targeting of HK2 blocks tumor growth. Cancer Discov. 3(10), 1105–1107 (2013). https://doi.org/10.1158/2159-8290.CD-13-0565

    Article  CAS  PubMed  Google Scholar 

  89. L. Jiao, H.L. Zhang, D.D. Li, K.L. Yang, J. Tang, X. Li, J. Ji, Y. Yu, R.Y. Wu, S. Ravichandran, J.J. Liu, G.K. Feng, M.S. Chen, Y.X. Zeng, R. Deng, X.F. Zhu, Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy 14(4), 671–684 (2018). https://doi.org/10.1080/15548627.2017.1381804

    Article  CAS  PubMed  Google Scholar 

  90. S. Yoshino, T. Hara, H.J. Nakaoka, A. Kanamori, Y. Murakami, M. Seiki, T. Sakamoto, The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux. Cell Discov. 2, 16019 (2016). https://doi.org/10.1038/celldisc.2016.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. A.M. Roberts, D.K. Miyamoto, T.R. Huffman, L.A. Bateman, A.N. Ives, D. Akopian, M.J. Heslin, C.M. Contreras, M. Rape, C.F. Skibola, D.K. Nomura, Chemoproteomic screening of covalent ligands reveals UBA5 as a novel pancreatic Cancer target. ACS Chem. Biol. 12(4), 899–904 (2017). https://doi.org/10.1021/acschembio.7b00020

    Article  CAS  PubMed  Google Scholar 

  92. C.J. David, J. Massagué, Contextual determinants of TGFβ action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19(7), 419–435 (2018). https://doi.org/10.1038/s41580-018-0007-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Y. Yang, M. Luo, K. Zhang, J. Zhang, T. Gao, D.O. Connell, F. Yao, C. Mu, B. Cai, Y. Shang, W. Chen, Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat. Commun. 11(1), 433 (2020). https://doi.org/10.1038/s41467-020-14324-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Y. Wang, Y. Liu, J. Liu, R. Kang, D. Tang, NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem. Biophys. Res. Commun. 531(4), 581–587 (2020). https://doi.org/10.1016/j.bbrc.2020.07.032

    Article  CAS  PubMed  Google Scholar 

  95. Z. Ye, Q. Zhuo, Q. Hu, X. Xu, M. Liu, Z. Zhang, W. Xu, W. Liu, G. Fan, Y. Qin, X. Yu, S. Ji, FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 38, 101807 (2021). https://doi.org/10.1016/j.redox.2020.101807

    Article  CAS  PubMed  Google Scholar 

  96. J. Koo, P. Yue, X. Deng, F.R. Khuri, S.Y. Sun, mTOR complex 2 stabilizes Mcl-1 protein by suppressing its glycogen synthase kinase 3-dependent and SCF-FBXW7-mediated degradation. Mol. Cell. Biol. 35(13), 2344–2355 (2015). https://doi.org/10.1128/MCB.01525-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. P. Tsvetkov, S. Coy, B. Petrova, M. Dreishpoon, A. Verma, M. Abdusamad, J. Rossen, L. Joesch-Cohen, R. Humeidi, R.D. Spangler, J.K. Eaton, E. Frenkel, M. Kocak, S.M. Corsello, S. Lutsenko, N. Kanarek, S. Santagata, T.R. Golub, Copper induces cell death by targeting lipoylated TCA cycle proteins. Science (New York, N.Y.) 375(6586), 1254–1261 (2022). https://doi.org/10.1126/science.abf0529

    Article  CAS  PubMed  Google Scholar 

  98. B. Zhang, T. Binks, R. Burke, The E3 ubiquitin ligase Slimb/β-TrCP is required for normal copper homeostasis in Drosophila. Biochimica et biophysica acta. Mol. Cell Res. 1867(10), 118768 (2020). https://doi.org/10.1016/j.bbamcr.2020.118768

    Article  CAS  Google Scholar 

  99. B.Z. Carter, P.Y. Mak, H. Mu, X. Wang, W. Tao, D.H. Mak, E.J. Dettman, M. Cardone, O. Zernovak, T. Seki, M. Andreeff, Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model. Haematologica 105(5), 1274–1284 (2020). https://doi.org/10.3324/haematol.2019.219261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. D. Venkatesh, N.A. O'Brien, F. Zandkarimi, D.R. Tong, M.E. Stokes, D.E. Dunn, E.S. Kengmana, A.T. Aron, A.M. Klein, J.M. Csuka, S.H. Moon, M. Conrad, C.J. Chang, D.C. Lo, A. D'Alessandro, C. Prives, B.R. Stockwell, MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev. 34(7–8), 526–543 (2020). https://doi.org/10.1101/gad.334219.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. M.S. Schrock, B.R. Stromberg, L. Scarberry, M.K. Summers, APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin. Cancer Biol. 67(Pt 2), 80–91 (2020). https://doi.org/10.1016/j.semcancer.2020.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. P. Zhang, K. Gao, L. Zhang, H. Sun, X. Zhao, Y. Liu, Z. Lv, Q. Shi, Y. Chen, D. Jiao, Y. Li, W. Gu, C. Wang, CRL2-KLHDC3 E3 ubiquitin ligase complex suppresses ferroptosis through promoting p14ARF degradation. Cell Death Differ. 29(4), 758–771 (2022). https://doi.org/10.1038/s41418-021-00890-0

    Article  CAS  PubMed  Google Scholar 

  103. E. Villa, R. Paul, O. Meynet, S. Volturo, G. Pinna, J.E. Ricci, The E3 ligase UBR2 regulates cell death under caspase deficiency via Erk/MAPK pathway. Cell Death Dis. 11(12), 1041 (2020). https://doi.org/10.1038/s41419-020-03258-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. A. Sato, J. Sunayama, K. Matsuda, S. Seino, K. Suzuki, E. Watanabe, K. Tachibana, A. Tomiyama, T. Kayama, C. Kitanaka, MEK-ERK signaling dictates DNA-repair gene MGMT expression and temozolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells (Dayton, Ohio) 29(12), 1942–1951 (2011). https://doi.org/10.1002/stem.753

    Article  CAS  PubMed  Google Scholar 

  105. D. Izumi, T. Ishimoto, K. Miyake, T. Eto, K. Arima, Y. Kiyozumi, T. Uchihara, J. Kurashige, M. Iwatsuki, Y. Baba, Y. Sakamoto, Y. Miyamoto, N. Yoshida, M. Watanabe, A. Goel, P. Tan, H. Baba, Colorectal Cancer stem cells acquire Chemoresistance through the upregulation of F-box/WD repeat-containing protein 7 and the consequent degradation of c-Myc. Stem Cells (Dayton, Ohio) 35(9), 2027–2036 (2017). https://doi.org/10.1002/stem.2668

    Article  CAS  PubMed  Google Scholar 

  106. Z. Zhao, Y. Wang, D. Yun, Q. Huang, D. Meng, Q. Li, P. Zhang, C. Wang, H. Chen, D. Lu, TRIM21 overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. Am. J. Cancer Res. 10(1), 114–130 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  107. M. Maugeri-Saccà, P. Vigneri, R. De Maria, Cancer stem cells and chemosensitivity. Clin. Cancer Res. 17(15), 4942–4947 (2011). https://doi.org/10.1158/1078-0432.CCR-10-2538

    Article  CAS  PubMed  Google Scholar 

  108. M. Cojoc, K. Mäbert, M.H. Muders, A. Dubrovska, A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Semin. Cancer Biol. 31, 16–27 (2015). https://doi.org/10.1016/j.semcancer.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  109. H.J. Lee, C.F. Li, D. Ruan, J. He, E.D. Montal, S. Lorenz, G.D. Girnun, C.H. Chan, Non-proteolytic ubiquitination of hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion. Nat. Commun. 10(1), 2625 (2019). https://doi.org/10.1038/s41467-019-10374-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. S. Zhou, J. Peng, L. Xiao, C. Zhou, Y. Fang, Q. Ou, J. Qin, M. Liu, Z. Pan, Z. Hou, TRIM25 regulates oxaliplatin resistance in colorectal cancer by promoting EZH2 stability. Cell Death Dis. 12(5), 463 (2021). https://doi.org/10.1038/s41419-021-03734-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. B.B. Chen, J.R. Glasser, T.A. Coon, C. Zou, H.L. Miller, M. Fenton, J.F. McDyer, M. Boyiadzis, R.K. Mallampalli, F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood 119(13), 3132–3141 (2012). https://doi.org/10.1182/blood-2011-06-358911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. B. Wang, Q. Wang, Z. Wang, J. Jiang, S.C. Yu, Y.F. Ping, J. Yang, S.L. Xu, X.Z. Ye, C. Xu, L. Yang, C. Qian, J.M. Wang, Y.H. Cui, X. Zhang, X.W. Bian, Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res. 74(20), 5746–5757 (2014). https://doi.org/10.1158/0008-5472.CAN-13-2563

    Article  CAS  PubMed  Google Scholar 

  113. J. Liu, Y. Cheng, M. Zheng, B. Yuan, Z. Wang, X. Li, J. Yin, M. Ye, Y. Song, Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal 6(1), 28 (2021). https://doi.org/10.1038/s41392-020-00418-x

    Article  Google Scholar 

  114. C. Lyle, S. Richards, K. Yasuda, M.A. Napoleon, J. Walker, N. Arinze, M. Belghasem, I. Vellard, W. Yin, J.D. Ravid, E. Zavaro, R. Amraei, J. Francis, U. Phatak, I.R. Rifkin, N. Rahimi, V.C. Chitalia, C-Cbl targets PD-1 in immune cells for proteasomal degradation and modulates colorectal tumor growth. Sci. Rep. 9(1), 20257 (2019). https://doi.org/10.1038/s41598-019-56208-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. S.C. Casey, L. Tong, Y. Li, R. Do, S. Walz, K.N. Fitzgerald, A.M. Gouw, V. Baylot, I. Gütgemann, M. Eilers, D.W. Felsher, MYC regulates the antitumor immune response through CD47 and PD-L1. Science (New York, N.Y.) 352(6282), 227–231 (2016). https://doi.org/10.1126/science.aac9935

    Article  CAS  PubMed  Google Scholar 

  116. Y. Bei, N. Cheng, T. Chen, Y. Shu, Y. Yang, N. Yang, X. Zhou, B. Liu, J. Wei, Q. Liu, W. Zheng, W. Zhang, H. Su, W.G. Zhu, J. Ji, P. Shen, CDK5 inhibition abrogates TNBC stem-cell property and enhances anti-PD-1 therapy. Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) 7(22), 2001417 (2020). https://doi.org/10.1002/advs.202001417

    Article  CAS  Google Scholar 

  117. P. Zhang, S. Elabd, S. Hammer, V. Solozobova, H. Yan, F. Bartel, S. Inoue, T. Henrich, J. Wittbrodt, F. Loosli, G. Davidson, C. Blattner, TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene 34(46), 5729–5738 (2015). https://doi.org/10.1038/onc.2015.21

    Article  CAS  PubMed  Google Scholar 

  118. X. Meng, X. Liu, X. Guo, S. Jiang, T. Chen, Z. Hu, H. Liu, Y. Bai, M. Xue, R. Hu, S.C. Sun, X. Liu, P. Zhou, X. Huang, L. Wei, W. Yang, C. Xu, FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature 564(7734), 130–135 (2018). https://doi.org/10.1038/s41586-018-0756-0

    Article  CAS  PubMed  Google Scholar 

  119. X.A. Zhou, J. Zhou, L. Zhao, G. Yu, J. Zhan, C. Shi, R. Yuan, Y. Wang, C. Chen, W. Zhang, D. Xu, Y. Ye, W. Wang, Z. Shen, W. Wang, J. Wang, KLHL22 maintains PD-1 homeostasis and prevents excessive T cell suppression. Proc. Natl. Acad. Sci. U. S. A. 117(45), 28239–28250 (2020). https://doi.org/10.1073/pnas.2004570117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. J. Zhang, X. Bu, H. Wang, Y. Zhu, Y. Geng, N.T. Nihira, Y. Tan, Y. Ci, F. Wu, X. Dai, J. Guo, Y.H. Huang, C. Fan, S. Ren, Y. Sun, G.J. Freeman, P. Sicinski, W. Wei, Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553(7686), 91–95 (2018). https://doi.org/10.1038/nature25015

    Article  CAS  PubMed  Google Scholar 

  121. Y. Wu, C. Zhang, X. Liu, Z. He, B. Shan, Q. Zeng, Q. Zhao, H. Zhu, H. Liao, X. Cen, X. Xu, M. Zhang, T. Hou, Z. Wang, H. Yan, S. Yang, Y. Sun, Y. Chen, R. Wu, T. Xie, … H. Xia, ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nat. Commun. 12(1), 2346 (2021). https://doi.org/10.1038/s41467-021-22467-8

  122. X. Huang, V.M. Dixit, Drugging the undruggables: Exploring the ubiquitin system for drug development. Cell Res. 26(4), 484–498 (2016). https://doi.org/10.1038/cr.2016.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. K. Bielskienė, L. Bagdonienė, J. Mozūraitienė, B. Kazbarienė, E. Janulionis, E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. Medicina (Kaunas, Lithuania) 51(1), 1–9 (2015). https://doi.org/10.1016/j.medici.2015.01.007

    Article  PubMed  Google Scholar 

  124. W. Zhang, Z. Ren, L. Jia, X. Li, X. Jia, Y. Han, Fbxw7 and Skp2 regulate stem cell switch between quiescence and mitotic division in lung adenocarcinoma. Biomed. Res. Int. 2019, 9648269 (2019). https://doi.org/10.1155/2019/9648269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. J. Liu, Y. Peng, L. Shi, L. Wan, H. Inuzuka, J. Long, J. Guo, J. Zhang, M. Yuan, S. Zhang, X. Wang, J. Gao, X. Dai, S. Furumoto, L. Jia, P.P. Pandolfi, J.M. Asara, W.G. Kaelin, J. Liu, W. Wei, Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Res. 31(1), 80–93 (2021). https://doi.org/10.1038/s41422-020-0372-z

    Article  CAS  PubMed  Google Scholar 

  126. W. Jiang, M. Lin, Z. Wang, Dioscin: A new potential inhibitor of Skp2 for cancer therapy. EBioMedicine 51, 102593 (2020). https://doi.org/10.1016/j.ebiom.2019.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  127. E. Malek, M.A. Abdel-Malek, S. Jagannathan, N. Vad, R. Karns, A.G. Jegga, A. Broyl, M. van Duin, P. Sonneveld, F. Cottini, K.C. Anderson, J.J. Driscoll, Pharmacogenomics and chemical library screens reveal a novel SCFSKP2 inhibitor that overcomes Bortezomib resistance in multiple myeloma. Leukemia 31(3), 645–653 (2017). https://doi.org/10.1038/leu.2016.258

    Article  CAS  PubMed  Google Scholar 

  128. J.G. Quirit, S.N. Lavrenov, K. Poindexter, J. Xu, C. Kyauk, K.A. Durkin, I. Aronchik, T. Tomasiak, Y.A. Solomatin, M.N. Preobrazhenskaya, G.L. Firestone, Indole-3-carbinol (I3C) analogues are potent small molecule inhibitors of NEDD4-1 ubiquitin ligase activity that disrupt proliferation of human melanoma cells. Biochem. Pharmacol. 127, 13–27 (2017). https://doi.org/10.1016/j.bcp.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  129. J. Zhang, J.J. Xie, S.J. Zhou, J. Chen, Q. Hu, J.X. Pu, J.L. Lu, Diosgenin inhibits the expression of NEDD4 in prostate cancer cells. Am. J. Transl. Res. 11(6), 3461–3471 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  130. M. Huang, Y. Zhou, D. Duan, C. Yang, Z. Zhou, F. Li, Y. Kong, Y.C. Hsieh, R. Zhang, W. Ding, W. Xiao, P. Puno, C. Chen, Targeting ubiquitin conjugating enzyme UbcH5b by a triterpenoid PC3-15 from Schisandra plants sensitizes triple-negative breast cancer cells to lapatinib. Cancer Lett. 504, 125–136 (2021). https://doi.org/10.1016/j.canlet.2021.02.009

    Article  CAS  PubMed  Google Scholar 

  131. A. Andrews, K. Warner, C. Rodriguez-Ramirez, A.T. Pearson, F. Nör, Z. Zhang, S. Kerk, A. Kulkarni, J.I. Helman, J.C. Brenner, M.S. Wicha, S. Wang, J.E. Nör, Ablation of Cancer stem cells by therapeutic inhibition of the MDM2-p53 interaction in Mucoepidermoid carcinoma. Clin. Cancer Res. 25(5), 1588–1600 (2019). https://doi.org/10.1158/1078-0432.CCR-17-2730

    Article  CAS  PubMed  Google Scholar 

  132. S. Daniele, B. Costa, E. Zappelli, E. Da Pozzo, S. Sestito, G. Nesi, P. Campiglia, L. Marinelli, E. Novellino, S. Rapposelli, C. Martini, Combined inhibition of AKT/mTOR and MDM2 enhances glioblastoma Multiforme cell apoptosis and differentiation of cancer stem cells. Sci. Rep. 5, 9956 (2015). https://doi.org/10.1038/srep09956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Z. Wei, Y. Liu, Y. Wang, Y. Zhang, Q. Luo, X. Man, F. Wei, X. Yu, Downregulation of Foxo3 and TRIM31 by miR-551b in side population promotes cell proliferation, invasion, and drug resistance of ovarian cancer. Med.l Oncol. (Northwood, London, England) 33(11), 126 (2016). https://doi.org/10.1007/s12032-016-0842-9

    Article  CAS  Google Scholar 

  134. Z. Wang, L. Kang, H. Zhang, Y. Huang, L. Fang, M. Li, P.J. Brown, C.H. Arrowsmith, J. Li, J. Wong, AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation. Oncogene 38(26), 5250–5264 (2019). https://doi.org/10.1038/s41388-019-0790-x

    Article  CAS  PubMed  Google Scholar 

  135. X. Zhang, D. Thummuri, Y. He, X. Liu, P. Zhang, D. Zhou, G. Zheng, Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-XL. Chem. Commun. (Camb.) 55(98), 14765–14768 (2019). https://doi.org/10.1039/c9cc07217a

    Article  CAS  PubMed  Google Scholar 

  136. X. Li, Y. Song, Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol. 13(1), 50 (2020). https://doi.org/10.1186/s13045-020-00885-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. W. Farnaby, M. Koegl, M.J. Roy, C. Whitworth, E. Diers, N. Trainor, D. Zollman, S. Steurer, J. Karolyi-Oezguer, C. Riedmueller, T. Gmaschitz, J. Wachter, C. Dank, M. Galant, B. Sharps, K. Rumpel, E. Traxler, T. Gerstberger, R. Schnitzer, O. Petermann, … A. Ciulli, BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15(7), 672–680 (2019). https://doi.org/10.1038/s41589-019-0294-6

  138. H. Liao, X. Li, L. Zhao, Y. Wang, X. Wang, Y. Wu, X. Zhou, W. Fu, L. Liu, H.G. Hu, Y.G. Chen, A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov. 6, 35 (2020). https://doi.org/10.1038/s41421-020-0171-1

  139. M.D.M. Noblejas-López, C. Nieto-Jimenez, M. Burgos, M. Gómez-Juárez, J.C. Montero, A. Esparís-Ogando, A. Pandiella, E.M. Galán-Moya, A. Ocaña, Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J. Exp. Clin. Cancer Res.: CR 38(1), 383 (2019). https://doi.org/10.1186/s13046-019-1387-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. T. Minko, Nanoformulation of BRD4-degrading PROTAC: Improving Druggability to target the 'Undruggable' MYC in pancreatic Cancer. Trends Pharmacol. Sci. 41(10), 684–686 (2020). https://doi.org/10.1016/j.tips.2020.08.008

    Article  CAS  PubMed  Google Scholar 

  141. J. Hines, S. Lartigue, H. Dong, Y. Qian, C.M. Crews, MDM2-recruiting PROTAC offers superior, synergistic Antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79(1), 251–262 (2019). https://doi.org/10.1158/0008-5472.CAN-18-2918

    Article  CAS  PubMed  Google Scholar 

  142. A.C. Qin, H. Jin, Y. Song, Y. Gao, Y.F. Chen, L.N. Zhou, S.S. Wang, X.S. Lu, The therapeutic effect of the BRD4-degrading PROTAC A1874 in human colon cancer cells. Cell Death Dis. 11(9), 805 (2020). https://doi.org/10.1038/s41419-020-03015-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. R. Hu, W.L. Wang, Y.Y. Yang, X.T. Hu, Q.W. Wang, W.Q. Zuo, Y. Xu, Q. Feng, N.Y. Wang, Identification of a selective BRD4 PROTAC with potent antiproliferative effects in AR-positive prostate cancer based on a dual BET/PLK1 inhibitor. Eur. J. Med. Chem. 227, 113922 (2022). https://doi.org/10.1016/j.ejmech.2021.113922

    Article  CAS  PubMed  Google Scholar 

  144. L. Chen, L. Han, S. Mao, P. Xu, X. Xu, R. Zhao, Z. Wu, K. Zhong, G. Yu, X. Wang, Discovery of A031 as effective proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader for the treatment of prostate cancer. Eur. J. Med. Chem. 216, 113307 (2021). https://doi.org/10.1016/j.ejmech.2021.113307

    Article  CAS  PubMed  Google Scholar 

  145. C. Xu, F. Meng, K.S. Park, A.J. Storey, W. Gong, Y.H. Tsai, E. Gibson, S.D. Byrum, D. Li, R.D. Edmondson, S.G. Mackintosh, M. Vedadi, L. Cai, A.J. Tackett, H.Ü. Kaniskan, J. Jin, G.G. Wang, A NSD3-targeted PROTAC suppresses NSD3 and cMyc oncogenic nodes in cancer cells. Cell Chem. Biol. 29(3), 386–397.e9 (2022). https://doi.org/10.1016/j.chembiol.2021.08.004

    Article  CAS  PubMed  Google Scholar 

  146. Y. Li, J. Yang, A. Aguilar, D. McEachern, S. Przybranowski, L. Liu, C.Y. Yang, M. Wang, X. Han, S. Wang, Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J. Med. Chem. 62(2), 448–466 (2019). https://doi.org/10.1021/acs.jmedchem.8b00909

    Article  CAS  PubMed  Google Scholar 

  147. J. Yang, Y. Li, A. Aguilar, Z. Liu, C.Y. Yang, S. Wang, Simple structural modifications converting a Bona fide MDM2 PROTAC degrader into a molecular glue molecule: A cautionary tale in the design of PROTAC degraders. J. Med. Chem. 62(21), 9471–9487 (2019). https://doi.org/10.1021/acs.jmedchem.9b00846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. B. Wang, S. Wu, J. Liu, K. Yang, H. Xie, W. Tang, Development of selective small molecule MDM2 degraders based on nutlin. Eur. J. Med. Chem. 176, 476–491 (2019). https://doi.org/10.1016/j.ejmech.2019.05.046

    Article  CAS  PubMed  Google Scholar 

  149. D. Ma, Y. Zou, Y. Chu, Z. Liu, G. Liu, J. Chu, M. Li, J. Wang, S.Y. Sun, Z. Chang, A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics 10(8), 3708–3721 (2020). https://doi.org/10.7150/thno.41677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. K. Wang, H. Zhou, Proteolysis targeting chimera (PROTAC) for epidermal growth factor receptor enhances anti-tumor immunity in non-small cell lung cancer. Drug Dev. Res. 82(3), 422–429 (2021). https://doi.org/10.1002/ddr.21765

    Article  CAS  PubMed  Google Scholar 

  151. Q. Liu, G. Tu, Y. Hu, Q. Jiang, J. Liu, S. Lin, Z. Yu, G. Li, X. Wu, Y. Tang, X. Huang, J. Xu, Y. Liu, L. Wu, Discovery of BP3 as an efficacious proteolysis targeting chimera (PROTAC) degrader of HSP90 for treating breast cancer. Eur. J. Med. Chem. 228, 114013 (2022). https://doi.org/10.1016/j.ejmech.2021.114013

    Article  CAS  PubMed  Google Scholar 

  152. L. Zhang, Q. Liu, K.W. Liu, Z.Y. Qin, G.X. Zhu, L.T. Shen, N. Zhang, B.Y. Liu, L.R. Che, J.Y. Li, T. Wang, L.Z. Wen, K.J. Liu, Y. Guo, X.R. Yin, X.W. Wang, Z.H. Zhou, H.L. Xiao, Y.H. Cui, X.W. Bian, … B. Wang, SHARPIN stabilizes β-catenin through a linear ubiquitination-independent manner to support gastric tumorigenesis. Gastric Cancer 24(2), 402–416 (2021). https://doi.org/10.1007/s10120-020-01138-5

  153. Z.Y. Qin, T. Wang, S. Su, L.T. Shen, G.X. Zhu, Q. Liu, L. Zhang, K.W. Liu, Y. Zhang, Z.H. Zhou, X.N. Zhang, L.Z. Wen, Y.L. Yao, W.J. Sun, Y. Guo, K.J. Liu, L. Liu, X.W. Wang, Y.L. Wei, J. Wang, … B. Wang, BRD4 promotes gastric Cancer progression and metastasis through acetylation-dependent stabilization of Snail. Cancer Res. 79(19), 4869–4881 (2019). https://doi.org/10.1158/0008-5472.CAN-19-0442

  154. C.Y. Fong, O. Gilan, E.Y. Lam, A.F. Rubin, S. Ftouni, D. Tyler, K. Stanley, D. Sinha, P. Yeh, J. Morison, G. Giotopoulos, D. Lugo, P. Jeffrey, S.C. Lee, C. Carpenter, R. Gregory, R.G. Ramsay, S.W. Lane, O. Abdel-Wahab, T. Kouzarides, … M.A. Dawson, BET inhibitor resistance emerges from leukaemia stem cells. Nature 525(7570), 538–542 (2015). https://doi.org/10.1038/nature14888

  155. J. Ding, N. Sharon, Z. Bar-Joseph, Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23(6), 355–368 (2022). https://doi.org/10.1038/s41576-021-00444-7

    Article  CAS  PubMed  Google Scholar 

  156. X. Wei, S. Fu, H. Li, Y. Liu, S. Wang, W. Feng, Y. Yang, X. Liu, Y.Y. Zeng, M. Cheng, Y. Lai, X. Qiu, L. Wu, N. Zhang, Y. Jiang, J. Xu, X. Su, C. Peng, L. Han, W.P. Lou, … Y. Gu, Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science (New York, N.Y.). 377(6610), eabp9444 (2022). https://doi.org/10.1126/science.abp9444

Download references

Acknowledgements

We thank all the members in the laboratory for helpful discussions on the manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1105300 to Bin Wang), National Natural Science Foundation of China (NSFC Nos. 81872027, 91959111, and 81822032 to Bin Wang), Natural Science Foundation of Chongqing (No. CSTC2019JCYJJQX0027 to Bin Wang), Medical Scientific Research Project of Chongqing Medical and Health Committee (2018GDRC006 to Yi Zhang), Funding from the Jin Feng laboratory to Bin Wang, and Funding from the Army Medical University (Nos. 2019CXLCA001, 2018XLC2023, and 2019XQY19 to Bin Wang), the National Institutes of Health, USA (R01AG077574), Nebraska Department of Health & Human Services (DHHS) LB595, LB606, and Creighton University startup funds (LB692) to Brian North. Through LB595, LB606 and LB692, this work is supported by revenue from Nebraska’s excise tax on cigarettes awarded to Brian North of Creighton University through the Nebraska Department of Health & Human Services (DHHS). Its contents represent the view(s) of the author(s) and do not necessarily represent the official views of the State of Nebraska or DHHS.

Author information

Authors and Affiliations

Authors

Contributions

Qiang Zou with the assistance of Meng Liu collected all the reference, made the table, and wrote the manuscript draft. Qiang Zou and Yi Zhang designed and drawn all the figures. Brian J. North checked the structure and grammar. Bin Wang discussed and amended the manuscript. Bin Wang, Brian J. North and Yi Zhang supervised the whole process. Bin Wang and Brian J. North edited the manuscript and approved the submission. All the authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Yi Zhang, Brian J. North or Bin Wang.

Ethics declarations

Ethical approval

This study was approved by the Medical Ethics Committee of Army Medical University.

Competing interests

The authors have declared no potential conflicts of interest in this review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qiang Zou and Meng Liu share co-first authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Q., Liu, M., Liu, K. et al. E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities. Cell Oncol. 46, 545–570 (2023). https://doi.org/10.1007/s13402-023-00777-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00777-x

Keywords

Navigation