Skip to main content

Advertisement

Log in

Blockade of USP14 potentiates type I interferon signaling and radiation-induced antitumor immunity via preventing IRF3 deubiquitination

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

The adaptive immune responses induced by radiotherapy has been demonstrated to largely rely on STING-dependent type I interferons (IFNs) production. However, irradiated tumor cells often fail to induce dendritic cells (DCs) to produce type I IFNs. Hence, we aim to uncover the limitation of STING-mediated innate immune sensing following radiation, and identify efficient reagents capable to rescue the failure of type I IFNs induction for facilitating radiotherapy.

Methods

A targeted cell-based phenotypic screening was performed to search for active molecules that could elevate the production of type I IFNs. USP14 knockout or inhibition was assayed for IFN production and the activation of STING signaling in vitro. The mechanisms of USP14 were investigated by western blot and co-immunoprecipitation in vitro. Additionally, combinational treatments with PT33 and radiation in vivo and in vitro models were performed to evaluate type I IFNs responses to radiation.

Results

PT33 was identified as an enhancer of STING agonist elicited type I IFNs production to generate an elevated and durable STING activation profile in vitro. Mechanistically, USP14 inhibition or deletion impairs the deubiquitylation of K63-linked IRF3. Furthermore, blockade of USP14 with PT33 enhances DC sensing of irradiated-tumor cells in vitro, and synergizes with radiation to promote systemic antitumor immunity in vivo.

Conclusion

Our findings reveal that USP14 is one of the major IFN production suppressors and impairs the activation of IRF3 by removing the K63-linked ubiquitination of IRF3. Therefore, blockage of USP14 results in the gain of STING signaling activation and radiation-induced adaptive immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available within the article, supplementary information, or available from the corresponding author upon reasonable request.

Abbreviations

USP14 :

Ubiquitin-specific protease 14

IFNs :

Interferons

DCs :

Dendritic cells

STING :

Stimulator of interferon genes

TBK1 :

TANK-binding kinase 1

IRF3 :

Interferon regulatory factor 3

TME :

Tumor microenvironment

cGAMP :

Cyclic GMP-AMP

cGAS :

cGAMP synthase

DUBs :

Deubiquitinases

RIG-I :

Retinoic acid-inducible gene I

USPs :

Ubiquitin-specific proteases

HCV-1 :

Herpes simplex virus type 1

BMDCs :

Bone marrow-derived dendritic cells

CDNs :

Cyclic dinucleotides

KO :

Knockout

OE :

Overexpression

References

  1. D.E. Citrin, Recent developments in radiotherapy. N. Engl. J. Med. 377, 1065–1075 (2017). https://doi.org/10.1056/NEJMra1608986

    Article  CAS  Google Scholar 

  2. E.B. Golden, D. Frances, I. Pellicciotta, S. Demaria, M. Helen Barcellos-Hoff, S.C. Formenti, Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. OncoImmunology 3, e28518 (2014). https://doi.org/10.4161/onci.28518

    Article  Google Scholar 

  3. C. Grassberger, S.G. Ellsworth, M.Q. Wilks, F.K. Keane, J.S. Loeffler, Assessing the interactions between radiotherapy and antitumour immunity. Nat. Rev. Clin. Oncol. 16, 729–745 (2019). https://doi.org/10.1038/s41571-019-0238-9

    Article  Google Scholar 

  4. C. Twyman-Saint Victor, A.J. Rech, A. Maity, R. Rengan, K.E. Pauken, E. Stelekati, J.L. Benci, B. Xu, H. Dada, P.M. Odorizzi, R.S. Herati, K.D. Mansfield, D. Patsch, R.K. Amaravadi, L.M. Schuchter, H. Ishwaran, R. Mick, D.A. Pryma, X. Xu, et al., Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015). https://doi.org/10.1038/nature14292

    Article  CAS  Google Scholar 

  5. L. Apetoh, F. Ghiringhelli, A. Tesniere, M. Obeid, C. Ortiz, A. Criollo, G. Mignot, M.C. Maiuri, E. Ullrich, P. Saulnier, H. Yang, S. Amigorena, B. Ryffel, F.J. Barrat, P. Saftig, F. Levi, R. Lidereau, C. Nogues, J.-P. Mira, et al., Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007). https://doi.org/10.1038/nm1622

    Article  CAS  Google Scholar 

  6. F. Klug, H. Prakash, P.E. Huber, T. Seibel, N. Bender, N. Halama, C. Pfirschke, R.H. Voss, C. Timke, L. Umansky, K. Klapproth, K. Schäkel, N. Garbi, D. Jäger, J. Weitz, H. Schmitz-Winnenthal, G.J. Hämmerling, P. Beckhove, Low-dose irradiation programs macrophage differentiation to an iNOS(+)M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013). https://doi.org/10.1016/j.ccr.2013.09.014

    Article  CAS  Google Scholar 

  7. L. Deng, H. Liang, M. Xu, X. Yang, B. Burnette, A. Arina, X.-D. Li, H. Mauceri, M. Beckett, T. Darga, X. Huang, T.F. Gajewski, Z.J. Chen, Y.-X. Fu, R.R. Weichselbaum, STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014). https://doi.org/10.1016/j.immuni.2014.10.019

    Article  CAS  Google Scholar 

  8. B.C. Burnette, H. Liang, Y. Lee, L. Chlewicki, N.N. Khodarev, R.R. Weichselbaum, Y.-X. Fu, S.L. Auh, The efficacy of radiotherapy relies upon induction of type I interferon–dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011). https://doi.org/10.1158/0008-5472.CAN-10-2820

    Article  CAS  Google Scholar 

  9. S.R. Paludan, G. Andrew, Bowie Imm. Sens. DNA Immun. 38, 870–880 (2013). https://doi.org/10.1016/j.immuni.2013.05.004

    Article  CAS  Google Scholar 

  10. Y. Hou, H. Liang, E. Rao, W. Zheng, X. Huang, L. Deng, Y. Zhang, X. Yu, M. Xu, H. Mauceri, A. Arina, R.R. Weichselbaum, Y.-X. Fu, Non-canonical NF-kappaB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49, 490–503.e494 (2018). https://doi.org/10.1016/j.immuni.2018.07.008

    Article  CAS  Google Scholar 

  11. C. Han, Z. Liu, Y. Zhang, A. Shen, C. Dong, A. Zhang, C. Moore, Z. Ren, C. Lu, X. Cao, C.-L. Zhang, J. Qiao, Y.-X. Fu, Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat. Immunol. 21, 546–554 (2020). https://doi.org/10.1038/s41590-020-0641-5

    Article  CAS  Google Scholar 

  12. X. Yue, Y. Zuo, H. Ke, J. Luo, L. Lou, W. Qin, Y. Wang, Z. Liu, D. Chen, H. Sun, W. Zheng, C. Zhu, R. Wang, G. Wen, J. Du, B. Zhou, X. Bu, Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem. Pharmacol. 137, 29–50 (2017). https://doi.org/10.1016/j.bcp.2017.04.032

    Article  CAS  Google Scholar 

  13. H. Hu, S.-C. Sun, Ubiquitin signaling in immune responses. Cell Res. 26, 457–483 (2016). https://doi.org/10.1038/cr.2016.40

    Article  CAS  Google Scholar 

  14. H. Sun, Q. Zhang, Y.-Y. Jing, M. Zhang, H.-Y. Wang, Z. Cai, T. Liuyu, Z.-D. Zhang, T.-C. Xiong, Y. Wu, Q.-Y. Zhu, J. Yao, H.-B. Shu, D. Lin, B. Zhong, USP13 negatively regulates antiviral responses by deubiquitinating STING. Nat. Commun. 8, 15534 (2017). https://doi.org/10.1038/ncomms15534

    Article  CAS  Google Scholar 

  15. J. Zhang, Y. Chen, X. Chen, W. Zhang, L. Zhao, L. Weng, H. Tian, Z. Wu, X. Tan, X. Ge, P. Wang, L. Fang, Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer. Cell Death Differ. 28, 139–155 (2021). https://doi.org/10.1038/s41418-020-0588-y

    Article  CAS  Google Scholar 

  16. C. Bodda, L.S. Reinert, S. Fruhwürth, T. Richardo, C. Sun, B.-C. Zhang, M. Kalamvoki, A. Pohlmann, T.H. Mogensen, P. Bergström, L. Agholme, P. O’Hare, B. Sodeik, M. Gyrd-Hansen, H. Zetterberg, S.R. Paludan, HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection. J. Exp. Med. 217, e20191422 (2020). https://doi.org/10.1084/jem.20191422

    Article  CAS  Google Scholar 

  17. T. Tsuchida, J. Zou, T. Saitoh, H. Kumar, T. Abe, Y. Matsuura, T. Kawai, S. Akira, The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010). https://doi.org/10.1016/j.immuni.2010.10.013

    Article  CAS  Google Scholar 

  18. J. Zhang, M.-M. Hu, Y.-Y. Wang, H.-B. Shu, TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination*. J. Biol. Chem. 287, 28646–28655 (2012). https://doi.org/10.1074/jbc.M112.362608

    Article  CAS  Google Scholar 

  19. M. Zhang, M.-X. Zhang, Q. Zhang, G.-F. Zhu, L. Yuan, D.-E. Zhang, Q. Zhu, J. Yao, H.-B. Shu, B. Zhong, USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Cell Res. 26, 1302–1319 (2016). https://doi.org/10.1038/cr.2016.125

    Article  CAS  Google Scholar 

  20. W.-W. Luo, S. Li, C. Li, H. Lian, Q. Yang, B. Zhong, H.-B. Shu, iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat. Immunol. 17, 1057–1066 (2016). https://doi.org/10.1038/ni.3510

    Article  CAS  Google Scholar 

  21. Y. Guo, F. Jiang, L. Kong, H. Wu, H. Zhang, X. Chen, J. Zhao, B. Cai, Y. Li, C. Ma, F. Yi, L. Zhang, B. Liu, Y. Zheng, L. Zhang, C. Gao, OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING. Cell. Mol. Immunol. 18, 1945–1955 (2021). https://doi.org/10.1038/s41423-020-00531-5

    Article  CAS  Google Scholar 

  22. B. Zhong, L. Zhang, C. Lei, Y. Li, A.-P. Mao, Y. Yang, Y.-Y. Wang, X.-L. Zhang, H.-B. Shu, The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30, 397–407 (2009). https://doi.org/10.1016/j.immuni.2009.01.008

    Article  CAS  Google Scholar 

  23. Y. Wang, Q. Lian, B. Yang, S. Yan, H. Zhou, L. He, G. Lin, Z. Lian, Z. Jiang, B. Sun, TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 11, e1005012 (2015). https://doi.org/10.1371/journal.ppat.1005012

    Article  CAS  Google Scholar 

  24. M. Zhang, L. Wang, X. Zhao, K. Zhao, H. Meng, W. Zhao, C. Gao, TRAF-interacting protein (TRIP) negatively regulates IFN-β production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1. J. Exp. Med. 209, 1703–1711 (2012). https://doi.org/10.1084/jem.20120024

    Article  CAS  Google Scholar 

  25. J. Cui, Y. Li, L. Zhu, D. Liu, Z. Songyang, H.Y. Wang, R.-F. Wang, NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat. Immunol. 13, 387–395 (2012). https://doi.org/10.1038/ni.2239

    Article  CAS  Google Scholar 

  26. Z. Yu, H. Song, M. Jia, J. Zhang, W. Wang, Q. Li, L. Zhang, W. Zhao, USP1–UAF1 deubiquitinase complex stabilizes TBK1 and enhances antiviral responses. J. Exp. Med. 214, 3553–3563 (2017). https://doi.org/10.1084/jem.20170180

    Article  CAS  Google Scholar 

  27. M. Lin, Z. Zhao, Z. Yang, Q. Meng, P. Tan, W. Xie, Y. Qin, R.-F. Wang, J. Cui, USP38 inhibits type I interferon signaling by editing TBK1 ubiquitination through NLRP4 signalosome. Mol. Cell 64, 267–281 (2016). https://doi.org/10.1016/j.molcel.2016.08.029

    Article  CAS  Google Scholar 

  28. H. Li, Z. Zhao, J. Ling, L. Pan, X. Zhao, H. Zhu, J. Yu, B. Xie, J. Shen, W. Chen, USP14 promotes K63-linked RIG-I deubiquitination and suppresses antiviral immune responses. Eur. J. Immunol. 49, 42–53 (2019). https://doi.org/10.1002/eji.201847603

    Article  CAS  Google Scholar 

  29. H. Li, J. Quan, X. Zhao, J. Ling, W. Chen, USP14 negatively regulates RIG-I-mediated IL-6 and TNF-α production by inhibiting NF-κB activation. Mol. Immunol. 130, 69–76 (2021). https://doi.org/10.1016/j.molimm.2020.12.022

    Article  CAS  Google Scholar 

  30. D. Wang, L. Fang, P. Li, L. Sun, J. Fan, Q. Zhang, R. Luo, X. Liu, K. Li, H. Chen, Z. Chen, S. Xiao, The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral Deubiquitinase. J. Virol. 85, 3758–3766 (2011). https://doi.org/10.1128/JVI.02589-10

    Article  CAS  Google Scholar 

  31. L. Huang, Y. Zhang, J. Zheng, N. Ni, Q. Qin, X. Huang, Y. Huang, Grouper ubiquitin-specific protease 14 promotes iridovirus replication through negatively regulating interferon response. Fish Shellfish Immunol. 105, 253–262 (2020). https://doi.org/10.1016/j.fsi.2020.07.015

    Article  CAS  Google Scholar 

  32. M. Chen, Q. Meng, Y. Qin, P. Liang, P. Tan, L. He, Y. Zhou, Y. Chen, J. Huang, R.-F. Wang, J. Cui, TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol. Cell 64, 105–119 (2016). https://doi.org/10.1016/j.molcel.2016.08.025

    Article  CAS  Google Scholar 

  33. M.B. Lutz, N. Kukutsch, A.L. Ogilvie, S. Rossner, F. Koch, N. Romani, G. Schuler, An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999). https://doi.org/10.1016/s0022-1759(98)00204-x

    Article  CAS  Google Scholar 

  34. X.-C. Wang, X. Yue, R.-X. Zhang, T.-Y. Liu, Z.-Z. Pan, M.-J. Yang, Z.-H. Lu, Z.-Y. Wang, J.-H. Peng, L.-Y. Le, G.-Y. Wang, Q.-H. Peng, Y. Meng, W. Huang, R.-Y. Liu, Genome-wide RNAi screening identifies RFC4 as a factor that mediates Radioresistance in colorectal Cancer by facilitating nonhomologous end joining repair. Clin. Cancer Res. 25, 4567 (2019). https://doi.org/10.1158/1078-0432.CCR-18-3735

    Article  CAS  Google Scholar 

  35. L. Li, R.Y. Liu, J.L. Huang, Q.C. Liu, Y. Li, P.H. Wu, Y.X. Zeng, W. Huang, Adenovirus-mediated intra-tumoral delivery of the human endostatin gene inhibits tumor growth in nasopharyngeal carcinoma. Int. J. Cancer 118, 2064–2071 (2006). https://doi.org/10.1002/ijc.21585

    Article  CAS  Google Scholar 

  36. W. Zeng, M. Xu, S. Liu, L. Sun, Z.J. Chen, Key role of Ubc5 and Lysine-63 Polyubiquitination in viral activation of IRF3. Mol. Cell 36, 315–325 (2009). https://doi.org/10.1016/j.molcel.2009.09.037

    Article  CAS  Google Scholar 

  37. A. Härtlova, S.F. Erttmann, F.A.M. Raffi, A.M. Schmalz, U. Resch, S. Anugula, S. Lienenklaus, L.M. Nilsson, A. Kröger, J.A. Nilsson, T. Ek, S. Weiss, N.O. Gekara, DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015). https://doi.org/10.1016/j.immuni.2015.01.012

    Article  CAS  Google Scholar 

  38. S.M. Harding, J.L. Benci, J. Irianto, D.E. Discher, A.J. Minn, R.A. Greenberg, Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017). https://doi.org/10.1038/nature23470

    Article  CAS  Google Scholar 

  39. C.-L. Kuo, L. Goldberg Alfred, Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Proc. Natl. Acad. Sci. 114, E3404–E3413 (2017). https://doi.org/10.1073/pnas.1701734114

    Article  CAS  Google Scholar 

  40. F. Wang, S. Ning, B. Yu, Y. Wang, USP14: Structure, function, and target inhibition. Front. Pharmacol. 12 (2022). https://doi.org/10.3389/fphar.2021.801328

  41. S. Liu, X. Cai, J. Wu, Q. Cong, X. Chen, T. Li, F. Du, J. Ren, Y.-T. Wu, V. Grishin Nick, J. Chen Zhijian, Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015). https://doi.org/10.1126/science.aaa2630

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (NSFC) (No. 81803054 and 81973174), Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012496 and 2022A1515012221).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: X.Y. and X.B.; Performed in vitro functional studies and analyzed data: W.W., H.X., C.L., Y.W., and W.Z.; Performed animal experiments and analyzed data: X.Y. and W.W.; Generated critical cellular tools: H.X., W.W., R.W., C.J. and J.W.; Performed mechanistical studies and analyzed data: X.Y., W.W., Y.L., Y.Z. and H.X.; Statistical analysis: X.Y., X.B.; Supervision of data: X.Y., X.B. and J.Q.; Analysis and interpretation of data and writing of the manuscript: X.B. and X.Y.. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Xin Yue or Xianzhang Bu.

Ethics declarations

Ethical approval and consent to participate

Animal experiments were approved by the Institutional Ethics Committee for Clinical Research and Animal Trials of the First Affiliated Hospital, Sun Yat-sen University (SYSUFAH). All the experiments were conducted in the Laboratory Animal Center of Sun Yat-sen University.

Consent for publication

Not applicable.

Conflict of interest

None of the authors have any potential conflicts to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 6616 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Xu, H., Liao, C. et al. Blockade of USP14 potentiates type I interferon signaling and radiation-induced antitumor immunity via preventing IRF3 deubiquitination. Cell Oncol. 45, 1347–1361 (2022). https://doi.org/10.1007/s13402-022-00724-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00724-2

Keywords

Navigation