Skip to main content

Advertisement

Log in

Inhibition of CD146 lessens uveal melanoma progression through reducing angiogenesis and vasculogenic mimicry

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Anti-angiogenesis drug therapy is ineffective in treating uveal melanoma since it only targets angiogenesis leaving vasculogenic mimicry aside. There is no effective clinical strategy targeting vasculogenic mimicry, yet. We show here that CD146 is a novel target to inhibit uveal melanoma progression since it regulates both uveal melanoma angiogenesis and vasculogenic mimicry activity.

Methods

CD146 inhibition was achieved with its specific siRNAs or antibody AA98. Tube formation and migration of primary human retinal microvascular endothelial cells and tube-like structure formation, migration, invasion of uveal melanoma cells were evaluated after CD146 inhibition. The underlying mechanisms were investigated by Western blot and immunofluorescence. Finally, uveal melanoma cells were injected subretinally into the eyes of nude mice and AA98 was administrated. Tumor size was revealed by H&E staining, and angiogenesis and vasculogenic mimicry were evaluated with CD31-PAS staining.

Results

CD146 inhibition induced declines in tube formation and migration of primary human retinal microvascular endothelial cells and tube-like structure formation of uveal melanoma cells. CD146 mediated VEGFR/AKT/p38/NF-κB and FAK/VE-cadherin signal cascades were partially responsible for these biological effects. CD146 blockade by siRNA or AA98 also resulted in inhibition of migration and invasion as well as EMT process of uveal melanoma cells. The physiological relevance of such declines was confirmed by showing that AA98 treatment markedly suppressed the tumor growth, angiogenesis and vasculogenic mimicry induced by implantation of uveal melanoma cells into the eyes of nude mice.

Conclusions

CD146 is a novel mediator of both angiogenesis and vasculogenic mimicry in uveal melanoma. Its antibody AA98 has the potency to be developed as a new antibody drug for treating uveal melanoma. Our results warrant further assessment of CD146 as a potential target to improve therapeutic management of uveal melanoma in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. The datasets and materials used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AKT:

Protein kinase B

ANOVA:

Analysis of variance

CM:

Conditioned medium

DAB:

Diaminobenzidine

DMEM:

Dulbecco’s modified Eagle’s medium

ECM:

Endothelial cell medium

EMT:

Epithelial-mesenchymal transition

FAK:

Focal adhesion kinase

FBS:

Fetal bovine serum

H&E:

Hematoxylin and eosin

HRMEC:

Human retinal microvascular endothelial cell

HRP:

Horseradish peroxidase

MCAM:

Melanoma cell adhesion molecule

MVD:

Mean vessel density

NC:

Negative control

NF-κB:

Nuclear factor kappa B

PAS:

Periodic acid Schiff

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

VMD:

Mean value of vasculogenic mimicry density

References

  1. V.A. White, J.D. Chambers, P.D. Courtright, W.Y. Chang, D.E. Horsman, Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer 83, 354–359 (1998)

    Article  CAS  Google Scholar 

  2. E.S. Rantala, M.M. Hernberg, S. Piperno-Neumann, H.E. Grossniklaus, T.T. Kivela, Metastatic uveal melanoma: The final frontier. Prog. Retin. Eye Res. 101041 (2022) https://doi.org/10.1016/j.preteyeres.2022.101041

  3. C.D.M. Roelofsen, A.P.A. Wierenga, S. van Duinen, R.M. Verdijk, J. Bleeker, M. Marinkovic, G.P.M. Luyten, M.J. Jager, Five decades of enucleations for uveal melanoma in one center: More tumors with high risk factors, no improvement in survival over time. Ocul. Oncol. Pathol. 7, 133–141 (2021). https://doi.org/10.1159/000509918

    Article  PubMed  Google Scholar 

  4. M. El Filali, P.A. Van der Velden, G.P.M. Luyten, M.J. Jager, Anti-angiogenic therapy in uveal melanoma. Dev. Ophthalmol. 49, 117–136 (2012). https://doi.org/10.1159/000329591

    Article  PubMed  Google Scholar 

  5. F. Castet, S. Garcia-Mulero, R. Sanz-Pamplona, A. Cuellar, O. Casanovas, J.M. Caminal, J.M. Piulats, Uveal melanoma, angiogenesis and immunotherapy, Is there any hope? Cancers (Basel) 11, (2019) https://doi.org/10.3390/cancers11060834

  6. I.C. Notting, G.S. Missotten, B. Sijmons, Z.F. Boonman, J.E. Keunen, G. van der Pluijm, Angiogenic profile of uveal melanoma. Curr. Eye Res. 31, 775–785 (2006). https://doi.org/10.1080/02713680600865052

    Article  CAS  PubMed  Google Scholar 

  7. S. Piperno-Neumann, A. Diallo, M.C. Etienne-Grimaldi, F.C. Bidard, M. Rodrigues, C. Plancher, P. Mariani, N. Cassoux, D. Decaudin, B. Asselain, V. Servois, Phase II trial of bevacizumab in combination with temozolomide as first-line treatment in patients with metastatic uveal melanoma. Oncologist 21, 281–282 (2016). https://doi.org/10.1634/theoncologist.2015-0501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A.A. Tarhini, P. Frankel, K.A. Margolin, S. Christensen, C. Ruel, J. Shipe-Spotloe, D.R. Gandara, A. Chen, J.M. Kirkwood, Aflibercept (VEGF Trap) in inoperable stage III or stage iv melanoma of cutaneous or uveal origin. Clin. Cancer Res. 17, 6574–6581 (2011). https://doi.org/10.1158/1078-0432.CCR-11-1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J.C. Moser, J.S. Pulido, R.S. Dronca, R.R. McWilliams, S.N. Markovic, A.S. Mansfield, The Mayo Clinic experience with the use of kinase inhibitors, ipilimumab, bevacizumab, and local therapies in the treatment of metastatic uveal melanoma. Melanoma Res. 25, 59–63 (2015). https://doi.org/10.1097/CMR.0000000000000125

    Article  CAS  PubMed  Google Scholar 

  10. J.H. Francis, J. Kim, A. Lin, R. Folberg, S. Iyer, D.H. Abramson, Growth of uveal melanoma following intravitreal bevacizumab. Ocul. Oncol. Pathol. 3, 117–121 (2017). https://doi.org/10.1159/000450859

    Article  PubMed  Google Scholar 

  11. A.J. Maniotis, R. Folberg, A. Hess, E.A. Seftor, L.M. Gardner, J. Pe’er, J.M. Trent, P.S. Meltzer, M.J. Hendrix, Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999). https://doi.org/10.1016/S0002-9440(10)65173-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S.L. Wechman, L. Emdad, D. Sarkar, S.K. Das, P.B. Fisher, Vascular mimicry: Triggers, molecular interactions and in vivo models. Adv. Cancer Res. 148, 27–67 (2020). https://doi.org/10.1016/bs.acr.2020.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Joshkon, X. Heim, C. Dubrou, R. Bachelier, W. Traboulsi, J. Stalin, H. Fayyad-Kazan, B. Badran, A. Foucault-Bertaud, A.S. Leroyer, N. Bardin, M. Blot-Chabaud, Role of CD146 (MCAM) in physiological and pathological angiogenesis-contribution of new antibodies for therapy. Biomedicines 8, 633 (2020). https://doi.org/10.3390/biomedicines8120633

    Article  CAS  PubMed Central  Google Scholar 

  14. T. Jiang, J. Zhuang, H. Duan, Y. Luo, Q. Zeng, K. Fan, H. Yan, D. Lu, Z. Ye, J. Hao, J. Feng, D. Yang, X. Yan, CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis. Blood 120, 2330–2339 (2012). https://doi.org/10.1182/blood-2012-01-406108

    Article  CAS  PubMed  Google Scholar 

  15. X. Yan, Y. Lin, D. Yang, Y. Shen, M. Yuan, Z. Zhang, P. Li, H. Xia, L. Li, D. Luo, Q. Liu, K. Mann, B.L. Bader, A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood 102, 184–191 (2003). https://doi.org/10.1182/blood-2002-04-1004

    Article  CAS  PubMed  Google Scholar 

  16. P. Bu, L. Gao, J. Zhuang, J. Feng, D. Yang, X. Yan, Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor-kappaB activation. Mol. Cancer Ther. 5, 2872–2878 (2006). https://doi.org/10.1158/1535-7163.MCT-06-0260

    Article  CAS  PubMed  Google Scholar 

  17. R. Crepin, D. Gentien, A. Duche, A. Rapinat, C. Reyes, F. Nemati, G. Massonnet, D. Decaudin, S. Djender, S. Moutel, K. Desrumeaux, N. Cassoux, S. Piperno-Neumann, S. Amigorena, F. Perez, S. Roman-Roman, A. de Marco, Nanobodies against surface biomarkers enable the analysis of tumor genetic heterogeneity in uveal melanoma patient-derived xenografts. Pigment Cell Melanoma Res. 30, 317–327 (2017). https://doi.org/10.1111/pcmr.12577

    Article  CAS  PubMed  Google Scholar 

  18. K. Lai, V. Sharma, M.J. Jager, R.M. Conway, M.C. Madigan, Expression and distribution of MUC18 in human uveal melanoma. Virchows Archiv. 451, 967–976 (2007). https://doi.org/10.1007/s00428-007-0498-0

    Article  CAS  PubMed  Google Scholar 

  19. Y. Krishna, A. Acha-Sagredo, D. Sabat-Pospiech, N. Kipling, K. Clarke, C.R. Figueiredo, H. Kalirai, S.E. Coupland, Transcriptome profiling reveals new insights into the immune microenvironment and upregulation of novel biomarkers in metastatic uveal melanoma. Cancers (Basel) 12, 2832 (2020). https://doi.org/10.3390/cancers12102832

    Article  CAS  Google Scholar 

  20. D.N. Hu, S.A. McCormick, R. Ritch, K. Pelton-Henrion, Studies of human uveal melanocytes in vitro: isolation, purification and cultivation of human uveal melanocytes. Invest. Ophthalmol. Vis. Sci. 34, 2210–2219 (1993)

    CAS  PubMed  Google Scholar 

  21. Y. Zhang, C. Zheng, J. Zhang, D. Yang, J. Feng, D. Lu, X. Yan, Generation and characterization of a panel of monoclonal antibodies against distinct epitopes of human CD146. Hybridoma (Larchmt) 27, 345–352 (2008). https://doi.org/10.1089/hyb.2008.0034

    Article  Google Scholar 

  22. M. Pardo, A. Garcia, B. Thomas, A. Pineiro, A. Akoulitchev, R.A. Dwek, N. Zitzmann, The characterization of the invasion phenotype of uveal melanoma tumour cells shows the presence of MUC18 and HMG-1 metastasis markers and leads to the identification of DJ-1 as a potential serum biomarker. Int. J. Cancer 119, 1014–1022 (2006). https://doi.org/10.1002/ijc.21942

    Article  CAS  PubMed  Google Scholar 

  23. M. el Filali, G.S. Missotten, W. Maat, L.V. Ly, G.P. Luyten, P.A. van der Velden, M.J. Jager, Regulation of VEGF-A in uveal melanoma. Invest. Ophthalmol. Vis. Sci. 51, 2329–2337 (2010). https://doi.org/10.1167/iovs.09-4739

    Article  PubMed  Google Scholar 

  24. C. Zheng, Y. Qiu, Q. Zeng, Y. Zhang, D. Lu, D. Yang, J. Feng, X. Yan, Endothelial CD146 is required for in vitro tumor-induced angiogenesis: the role of a disulfide bond in signaling and dimerization. Int. J. Biochem. Cell Biol. 41, 2163–2172 (2009). https://doi.org/10.1016/j.biocel.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  25. J. Zhuang, T. Jiang, D. Lu, Y. Luo, C. Zheng, J. Feng, D. Yang, C. Chen, X. Yan, NADPH oxidase 4 mediates reactive oxygen species induction of CD146 dimerization in VEGF signal transduction. Free Radic. Biol. Med. 49, 227–236 (2010). https://doi.org/10.1016/j.freeradbiomed.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  26. D. Delgado-Bellido, M. Fernandez-Cortes, M.I. Rodriguez, S. Serrano-Saenz, A. Carracedo, A. Garcia-Diaz, F.J. Oliver, VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression. Cell Death Differ. 26, 348–361 (2019). https://doi.org/10.1038/s41418-018-0125-4

    Article  CAS  PubMed  Google Scholar 

  27. A. Tura, V.E. Pawlik, M. Rudolf, J.S. Ernesti, J.N. Stutzer, S. Grisanti, M. Ranjbar, Uptake of ranibizumab but not bevacizumab into uveal melanoma cells correlates with a sustained decline in VEGF-A levels and metastatic activities. Cancers (Basel) 11, 868 (2019). https://doi.org/10.3390/cancers11060868

    Article  CAS  Google Scholar 

  28. C.I. Schnegg, M.H. Yang, S.K. Ghosh, M.Y. Hsu, Induction of vasculogenic mimicry overrides VEGF-A silencing and enriches stem-like cancer cells in melanoma. Cancer Res 75, 1682–1690 (2015). https://doi.org/10.1158/0008-5472.CAN-14-1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Chen, S. Zhang, X. Li, B. Sun, X. Zhao, D. Zhang, S. Zhao, A pilot study of vasculogenic mimicry immunohistochemical expression in intraocular melanoma model. Oncol. Rep. 21, 989–994 (2009). https://doi.org/10.3892/or_00000313

    Article  PubMed  Google Scholar 

  30. D. Delgado-Bellido, S. Serrano-Saenz, M. Fernandez-Cortes, F.J. Oliver, Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 16, 65 (2017). https://doi.org/10.1186/s12943-017-0631-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z. Wang, Q. Xu, N. Zhang, X. Du, G. Xu, X. Yan, CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct. Target. Ther. 5, 148 (2020). https://doi.org/10.1038/s41392-020-00259-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. B. Xue, P. Wang, W. Yu, J. Feng, J. Li, R. Zhao, Z. Yang, X. Yan, H. Duan, CD146 as a promising therapeutic target for retinal and choroidal neovascularization diseases. Sci. China Life Sci. (2021). https://doi.org/10.1007/s11427-021-2020-0

    Article  PubMed  PubMed Central  Google Scholar 

  33. Q. Zeng, W. Li, D. Lu, Z. Wu, H. Duan, Y. Luo, J. Feng, D. Yang, L. Fu, X. Yan, CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer. Proc. Natl. Acad. Sci. U. S. A. 109, 1127–1132 (2012). https://doi.org/10.1073/pnas.1111053108

    Article  PubMed  Google Scholar 

  34. H. Yang, M.J. Jager, H.E. Grossniklaus, Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma. Invest. Ophthalmol. Vis. Sci. 51, 2835–2842 (2010). https://doi.org/10.1167/iovs.09-4755

    Article  PubMed  PubMed Central  Google Scholar 

  35. J.M. Lehmann, B. Holzmann, E.W. Breitbart, P. Schmiegelow, G. Riethmuller, J.P. Johnson, Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res. 47, 841–845 (1987)

    CAS  PubMed  Google Scholar 

  36. R.K. Jain, Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622 (2014). https://doi.org/10.1016/j.ccell.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Masaoutis, S. Kokkali, S. Theocharis, Immunotherapy in uveal melanoma: novel strategies and opportunities for personalized treatment. Expert Opin Investig. Drugs, 1–15 (2021). https://doi.org/10.1080/13543784.2021.1898587

  38. P. Nathan, J.C. Hassel, P. Rutkowski, J.F. Baurain, M.O. Butler, M. Schlaak, R.J. Sullivan, S. Ochsenreither, R. Dummer, J.M. Kirkwood, A.M. Joshua, J.J. Sacco, A.N. Shoushtari, M. Orloff, J.M. Piulats, M. Milhem, A.K.S. Salama, B. Curti, L. Demidov, L. Gastaud, C. Mauch, M. Yushak, R.D. Carvajal, O. Hamid, S.E. Abdullah, C. Holland, H. Goodall, S. Piperno-Neumann, I.M.-. Investigators, Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 385, 1196–1206 (2021). https://doi.org/10.1056/NEJMoa2103485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by Zhejiang Provincial Natural Science Foundation of China (LY21H120006, LY16H120009), the Project of State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University (J02-20190201), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2018122).

Author information

Authors and Affiliations

Authors

Contributions

QH, JQ, and HD conceived and designed this project. RZ, XC, SC, JT, FC and YL performed experiments. RZ, PR, XY, LT, HD, JQ and QH analyzed the data and drafted the manuscript. All authors reviewed and edited the final manuscript version. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hongxia Duan, Jia Qu or Qiang Hou.

Ethics declarations

Ethics approval

All studies and procedures involving human tissues were approved by the Wenzhou Medical University ethics committee and performed in compliance with the Declaration of Helsinki and national laws. Studies on animals were performed in compliance with the ARVO Statement for the use of animals in Ophthalmic and Visual Research and with the Institutional Animal Care and Use Committee policies and procedures of Wenzhou Medical University.

Consent for publish

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Chen, X., Chen, S. et al. Inhibition of CD146 lessens uveal melanoma progression through reducing angiogenesis and vasculogenic mimicry. Cell Oncol. 45, 557–572 (2022). https://doi.org/10.1007/s13402-022-00682-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00682-9

Keywords

Navigation