Abstract
Background
The transcriptional repressor B-cell lymphoma 6 (BCL6) is dysregulated in several neoplasms, but its role in triple negative breast cancer (TNBC), a highly aggressive subtype which lacks effective treatment, is unclear. The presence of intratumoral cancer stem cells (CSCs) is a main cause of tumor relapse. The Notch signaling pathway is crucial for regulating CSC self-renewal and promoting breast cancer (BC) development and resistance to anticancer therapies. Here, we investigated signaling cascades of BCL6 in the CSC compartment of TNBCs, and the mechanisms that govern its activity, mainly through Notch signaling.
Methods
Gene expression, somatic copy number alterations and clinical data from the Cancer Genome Atlas and METABRIC were accessed through the Xena and cbioportal browsers. Public transcriptome profiles from TNBC datasets were retrieved from the Gene Expression Omnibus. Mammosphere formation efficiency was calculated after BCL6 knockdown via transient siRNA transfection, stable silencing or pharmacological inhibition. The effects exhibited via BCL6 inhibition in putative TNBC stem-like cells were evaluated by immunofluorescence and qRT-PCR analyses. Chromatin immunoprecipitation experiments were performed to validate a putative BCL6 responsive element located in the first intron of the Numb gene and to define the circuit of corepressors engaged by BCL6 following its inhibition. Immunoprecipitation assays were carried out to investigate a novel interaction at the basis of BCL6 control of CSC activity in TNBC.
Results
In silico analyses of benchmarked public datasets revealed a significant enrichment of BCL6 in cancer stemness related pathways, particularly of Notch signaling in TNBC. In vitro stable inhibition of BCL6 significantly reduced tumor cell growth and, accordingly, we found that the mammosphere formation efficiency of BCL6 silenced cells was significantly impaired by pharmacological inhibition of Notch signaling. BCL6 was found to be expressed at significantly higher levels in TNBC mammospheres than in their adherent counterparts, and loss of BCL6 function significantly decreased mammosphere formation with preferential targeting of CD44-positive versus ALDH-positive stem-like cells. Functional interplay between BCL6 and the chromatin remodeling factor EZH2 triggered the BCL6/Notch stemness signaling axis via inhibition of Numb transcription.
Conclusions
Our results may be instrumental for the prospective design of combination treatment strategies that selectively target novel TNBC-associated biomarker(s) whose activity is implicated in the regulation of cancer stemness (such as BCL6) and molecules in developmentally conserved signaling pathways (such as Notch) to achieve long-lasting tumor control and improve patient outcomes.
This is a preview of subscription content, access via your institution.







Availability of data and materials
All data supporting the conclusions of this article are included within the article and its additional files. TCGA data from RNA-seq (HiSeq counts) and somatic CN alterations were accessed using the Xena browser. METABRIC-processed data were retrieved from BioPortal. Normalized data and clinical information including TNBC datasets were retrieved from GEO. The ChIP seq data relative to the HER2-positive SKBR3 BC cell line analyzed in the present study are available upon request from the corresponding author of [6].
Abbreviations
- BCL6:
-
B-cell lymphoma protein 6
- TNBC:
-
Triple negative breast cancer
- CSCs:
-
Cancer stem cells
- BC:
-
Breast cancer
- 2nd gen:
-
Second generation of mammospheres
- SMRT:
-
Silencing mediator for retinoid and thyroid receptors
- BCoR:
-
BCL6 corepressor
- HDACs:
-
Histone deacetylases
- EZH2:
-
Enhancer of zeste homolog 2
- HIF-1α:
-
Hypoxia-inducible factor 1-alpha
- EMT:
-
Epithelial–mesenchymal transition
- ZEB1:
-
Zinc finger e-box binding homeobox 1
- Wnt:
-
Wingless-related integration site
- RI-BPI:
-
Retro-inverso BCL6 peptide inhibitor
- BTB:
-
Broad-complex, tramtrack, and bric-à-brac
- TCGA:
-
The cancer genome atlas
- CN:
-
Copy number
- GEO:
-
Gene expression omnibus datasets
- IQR:
-
Interquartile range
- ER:
-
Estrogen receptor
- PR:
-
Progesterone receptor
- HER2:
-
Human epidermal growth factor receptor 2
- GSEA:
-
Gene set enrichment analysis
- MSigDB:
-
Molecular signature database
- ssGSEA:
-
Single-sample GSEA
- IC50 :
-
The concentration that inhibits 50% of cell growth
- DMSO:
-
Dimethyl sulfoxide
- EED:
-
Embryonic ectoderm development
- PRC2:
-
Polycomb repressive complex 2
- H3K27me3:
-
Tri-methylated lysine 27 of histone H3
- MFE:
-
Mammosphere-forming efficiency
- qRT-PCR:
-
Quantitative real-time PCR
- siRNA:
-
Small RNA interference
- siBCL6:
-
SiRNAs specific for BCL6
- siSCR:
-
Scramble control siRNA
- shRNA:
-
Short hairpin RNA interference
- shBCL6-SUM149 and shBCL6-SUM159:
-
Stable BCL6-silenced SUM149 and SUM159 cells
- shSCR-SUM149 and shSCR-SUM159:
-
Stable scramble control-silenced SUM149 and SUM159 cells
- GFP:
-
Green fluorescent protein
- FACS:
-
Fluorescence activated cell sorting
- MFI:
-
Mean fluorescence intensity
- ALDH:
-
Aldehyde dehydrogenases
- BAAA:
-
BODIPY-aminoacetaldehyde
- DEAB:
-
Diethylaminobenzaldehyde
- ALDH+ :
-
ALDH-positive cells
- ALDH-:
-
ALDH-negative cells
- FITC:
-
Fluorescein isothiocyanate
- WB:
-
Western blot
- IP:
-
Immunoprecipitation
- ChIP:
-
Chromatin immunoprecipitation
- FDR:
-
False discovery rate
- BL1:
-
Basal-like 1 BC subtype
- BL2:
-
Basal-like 2 BC subtype
- IM:
-
Immunomodulatory BC subtype
- LAR:
-
Luminal androgen receptor BC subtype
- M:
-
Mesenchymal BC subtype
- UNS:
-
Unstable BC subtype
- mRNA:
-
Messenger RNA
- 3D:
-
3-Dimensional mammosphere-forming cell culture conditions
- 2D:
-
2-Dimension adherent cell culture conditions
- CD44+ :
-
CD44-positive cells
- CTRL:
-
Parental control
- ChIP seq:
-
Chromatin immunoprecipitation by deep sequencing
- NT:
-
Untreated cells
References
C. Denkert, C. Liedtke, A. Tutt, G. Von Minckwitz, Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 389, 2430–2442 (2017)
A.C. Garrido-Castro, N.U. Lin, K. Polyak, Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov. 9, 176–198 (2019)
C. Liedtke, C. Mazouni, K.R. Hess, F. Andre, A. Tordai, J.A. Mejia, W.F. Symmans, A.M. Gonzalez-Angulo, B. Hennessy, M. Green, M. Cristofanilli, G.N. Hortobagyi, L. Pusztai, Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26, 1275–1281 (2008)
N.U. Lin, A. Vanderplas, M.E. Hughes, R.L. Theriault, S.B. Edge, Y.N. Wong, D.W. Blayney, J.C. Niland, E.P. Winer, J.C. Weeks, Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 118, 5463–5472 (2012)
M.K. Malhotra, L.A. Emens, The evolving management of metastatic triple negative breast cancer. Semin. Oncol. 47, 229–237 (2020)
S.R. Walker, S. Liu, M. Xiang, M. Nicolais, K. Hatzi, E. Giannopoulou, O. Elemento, L. Cerchietti, A. Melnick, D.A. Frank, The transcriptional modulator BCL6 as a molecular target for breast cancer therapy. Oncogene 34, 1073–1082 (2015)
M.G. Cardenas, E. Oswald, W. Yu, F. Xue, A.D. Mackerell Jr., A.M. Melnick, The expanding role of the BCL6 oncoprotein as a cancer therapeutic target. Clin. Cancer Res. 23, 885–893 (2017)
C.C. Chang, B.H. Ye, R.S. Chaganti, R. Dalla-Favera, BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl. Acad. Sci. USA 93, 6947–6952 (1996)
K.F. Ahmad, A. Melnick, S. Lax, D. Bouchard, J. Liu, C.L. Kiang, S. Mayer, S. Takahashi, J.D. Licht, G.G. Privé, Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol. Cell 12, 1551–1564 (2003)
G. Cattoretti, L. Pasqualucci, G. Ballon, W. Tam, S.V. Nandula, Q. Shen, T. Mo, V.V. Murty, R. Dalla-Favera, Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455. (2005). https://doi.org/10.1016/j.ccr.2005.03.037
W. Ci, J.M. Polo, A. Melnick, B-cell lymphoma 6 and the molecular pathogenesis of diffuse large B-cell lymphoma. Curr. Opin. Hematol. 15, 381–390 (2008)
S. Logarajah, P. Hunter, M. Kraman, D. Steele, S. Lakhani, L. Bobrow, A. Venkitaraman, S. Wagner, BCL-6 is expressed in breast cancer and prevents mammary epithelial differentiation. Oncogene 22, 5572–5578 (2003)
R. Bos, P.J. Van Diest, P. van der Groep, A.E. Greijer, M.A. Hermsen, I. Heijnen, G.A. Meijer, J.P. Baak, H.M. Pinedo, E. van der Wall, A. Shvarts, Protein expression of B-cell lymphoma gene 6 (BCL-6) in invasive breast cancer is associated with cyclin D1 and hypoxia-inducible factor-1alpha (HIF-1alpha). Oncogene 22, 8948–8951 (2003)
Q. Wu, X. Liu, H. Yan, Y.H. He, S. Ye, X.W. Cheng, G.L. Zhu, W.Y. Wu, X.N. Wang, X.J. Kong, X.C. Xu, P.E. Lobie, T. Zhu, Z.S. Wu, B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells. BMC Cancer 14, 418. (2014) https://doi.org/10.1186/1471-2407-14-418
J.M. Yu, W. Sun, F. Hua, J. Xie, H. Lin, D.D. Zhou, Z.W. Hu, BCL6 induces EMT by promoting the ZEB1-mediated transcription repression of E-cadherin in breast cancer cells. Cancer Lett. 365, 190–200 (2015)
S. Liu, Y. Cong, D. Wang, Y. Sun, L. Deng, Y. Liu, R. Martin-Trevino, L. Shang, S.P. McDermott, M.D. Landis, S. Hong, A. Adams, R. D’Angelo, C. Ginestier, E. Charafe-Jauffret, S.G. Clouthier, D. Birnbaum, S.T. Wong, M. Zhan, J.C. Chang, M.S. Wicha, Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2, 78–91 (2014)
L. Castagnoli, F. De Santis, T. Volpari, C. Vernieri, E. Tagliabue, M. Di Nicola, S.M. Pupa, Cancer stem cells: Devil or savior-looking behind the scenes of immunotherapy failure. Cells 9, E555 (2020)
D.L. Dragu, L.G. Necula, C. Bleotu, C.C. Diaconu, M. Chivu-Economescu, Therapies targeting cancer stem cells: Current trends and future challenges. World J. Stem Cells 7, 1185–1201 (2015)
T.M. Fernando, R. Marullo, G.B. Pera, J.M. Phillip, S.N. Yang, G. Lundell-Smith, I. Torregroza, H. Ahn, T. Evans, B. Gyorffy, G.G. Privé, M. Hirano, A.M. Melnick, L. Cerchietti, BCL6 evolved to enable stress tolerance in vertebrates and is broadly required by cancer cells to adapt to stress. Cancer Discov. 9, 662–679 (2019)
S. Pece, S. Confalonieri, R. Romano, P.P. Di Fiore, NUMB-ing down cancer by more than just a NOTCH. Biochim. Biophys. Acta 1815, 26–43 (2011)
E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, A. Jacobsen, C.J. Byrne, M.L. Heuer, E. Larsson, Y. Antipin, B. Reva, A.P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012)
S. Hanzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data. BMC. Bioinform. 14, 7 (2013)
K. Krug, E.J. Jaehnig, S. Satpathy, L. Blumenberg, A. Karpova, M. Anurag, G. Miles, P. Mertins, Y. Geffen, L.C. Tang, D.I. Heiman, S. Cao, Y.E. Maruvka, J.T. Lei, C. Huang, R.B. Kothadia, A. Colaprico, C. Birger, J. Wang, Y. Dou, B. Wen, Z. Shi, Y. Liao, M. Wiznerowicz, M.A. Wyczalkowski, X.S. Chen, J.J. Kennedy, A.G. Paulovich, M. Thiagarajan, C.R. Kinsinger, T. Hiltke, E.S. Boja, M. Mesri, A.I. Robles, H. Rodriguez, T.F. Westbrook, L. Ding, G. Getz, K.R. Clauser, D. Fenyo, K.V. Ruggles, B. Zhang, D.R. Mani, S.A. Carr, M.J. Ellis, M.A. Gillette, Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 183, 1436–1456 (2020)
W. Qi, K. Zhao, J. Gu, Y. Huang, Y. Wang, H. Zhang, M. Zhang, J. Zhang, Z. Yu, L. Li, L. Teng, S. Chuai, C. Zhang, M. Zhao, H. Chan, Z. Chen, D. Fang, Q. Fei, L. Feng, L. Feng, Y. Gao, H. Ge, X. Ge, G. Li, A. Lingel, Y. Lin, Y. Liu, F. Luo, M. Shi, L. Wang, Z. Wang, Y. Yu, J. Zeng, C. Zeng, L. Zhang, Q. Zhang, S. Zhou, C. Oyang, P. Atadja, E. Li, An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat. Chem. Biol. 13, 381–388 (2017)
L. Castagnoli, G.C. Ghedini, A. Koschorke, T. Triulzi, M. Dugo, P. Gasparini, P. Casalini, A. Palladini, M. Iezzi, A. Lamolinara, P.L. Lollini, P. Nanni, C. Chiodoni, E. Tagliabue, S.M. Pupa, Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer. Oncogene 36, 1721–1732 (2017)
C.G.A. Network, Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012)
C. Curtis, S.P. Shah, S.F. Chin, G. Turashvili, O.M. Rueda, M.J. Dunning, D. Speed, A.G. Lynch, S. Samarajiwa, Y. Yuan, S. Graf, G. Ha, G. Haffari, A. Bashashati, R. Russell, S. McKinney, A. Langerod, A. Green, E. Provenzano, G. Wishart, S. Pinder, P. Watson, F. Markowetz, L. Murphy, I. Ellis, A. Purushotham, A.L. Borresen-Dale, J.D. Brenton, S. Tavare, C. Caldas, S. Aparicio, The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012)
B.D. Lehmann, J.A. Bauer, X. Chen, M.E. Sanders, A.B. Chakravarthy, Y. Shyr, J.A. Pietenpol, Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011)
E. Lim, D. Wu, B. Pal, T. Bouras, M.L. Asselin-Labat, F. Vaillant, H. Yagita, G.J. Lindeman, G.K. Smyth, J.E. Visvader, Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 12, R21 (2010)
C.J. Creighton, X. Li, M. Landis, J.M. Dixon, V.M. Neumeister, A. Sjolund, D.L. Rimm, H. Wong, A. Rodriguez, J.I. Herschkowitz, C. Fan, X. Zhang, X. He, A. Pavlick, M.C. Gutierrez, L. Renshaw, A.A. Larionov, D. Faratian, S.G. Hilsenbeck, C.M. Perou, M.T. Lewis, J.M. Rosen, J.C. Chang, Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA 106, 13820–13825 (2009)
R. Sabatier, P. Finetti, N. Cervera, E. Lambaudie, B. Esterni, E. Mamessier, A. Tallet, C. Chabannon, J.M. Extra, J. Jacquemier, P. Viens, D. Birnbaum, F. Bertucci, A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res. Treat. 126, 407–420 (2011)
P. Jézéquel, D. Loussouarn, C. Guérin-Charbonnel, L. Campion, A. Vanier, W. Gouraud, H. Lasla, C. Guette, I. Valo, V. Verrièle, M. Campone, Gene-expression molecular subtyping of triple-negative breast cancer tumours: Importance of immune response. Breast Cancer Res. 17, 43 (2015)
A. Prat, J.S. Parker, O. Karginova, C. Fan, C. Livasy, J.I. Herschkowitz, X. He, C.M. Perou, Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68 (2010)
M. Al Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988 (2003)
C. Ginestier, M.H. Hur, E. Charafe-Jauffret, F. Monville, J. Dutcher, M. Brown, J. Jacquemier, P. Viens, C.G. Kleer, S. Liu, A. Schott, D. Hayes, D. Birnbaum, M.S. Wicha, G. Dontu, ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007)
M.G. Cardenas, W. Yu, W. Beguelin, M.R. Teater, H. Geng, R.L. Goldstein, E. Oswald, K. Hatzi, S.N. Yang, J. Cohen, R. Shaknovich, K. Vanommeslaeghe, H. Cheng, D. Liang, H.J. Cho, J. Abbott, W. Tam, W. Du, J.P. Leonard, O. Elemento, L. Cerchietti, T. Cierpicki, F. Xue, A.D. Mackerell Jr., A.M. Melnick, Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma. J. Clin. Invest. 126, 3351–3362 (2016)
P. Ntziachristos, J.S. Lim, J. Sage, I. Aifantis, From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 25, 318–334 (2014)
C.J. Chang, J.Y. Yang, W. Xia, C.T. Chen, X. Xie, C.H. Chao, W.A. Woodward, J.M. Hsu, G.N. Hortobagyi, M.C. Hung, EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 19, 86–100 (2011)
M.E. Gonzalez, H.M. Moore, X. Li, K.A. Toy, W. Huang, M.S. Sabel, K.M. Kidwell, C.G. Kleer, EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc. Natl. Acad. Sci. USA 111, 3098–3103 (2014)
W. Beguelin, M. Teater, M.D. Gearhart, M.T. Calvo Fernandez, R.L. Goldstein, M.G. Cardenas, K. Hatzi, M. Rosen, H. Shen, C.M. Corcoran, M.Y. Hamline, R.D. Gascoyne, R.L. Levine, O. Abdel-Wahab, J.D. Licht, R. Shaknovich, O. Elemento, V.J. Bardwell, A.M. Melnick, EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell 30, 197–213 (2016)
L. Ang, L. Zheng, J. Wang, J. Huang, H.G. Hu, Q. Zou, Y. Zhao, Q.M. Liu, M. Zhao, Z.S. Wu, Expression of and correlation between BCL6 and ZEB family members in patients with breast cancer. Exp. Ther. Med. 14, 3985–3992 (2017)
C. Hurtz, K. Hatzi, L. Cerchietti, M. Braig, E. Park, Y.M. Kim, S. Herzog, P. Ramezani-Rad, H. Jumaa, M.C. Muller, W.K. Hofmann, A. Hochhaus, B.H. Ye, A. Agarwal, B.J. Druker, N.P. Shah, A.M. Melnick, M. Muschen, BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J. Exp. Med. 208, 2163–2174 (2011)
B. Martin-Castillo, E. Lopez-Bonet, E. Cuyas, G. Vinas, S. Pernas, J. Dorca, J.A. Menendez, Cancer stem cell-driven efficacy of trastuzumab (Herceptin): Towards a reclassification of clinically HER2-positive breast carcinomas. Oncotarget 6, 32317–32338 (2015)
C.T. Jordan, M.L. Guzman, M. Noble, Cancer stem cells. N. Engl. J. Med. 355, 1253–1261 (2006)
U. Mehraj, R.A. Ganai, M.A. Macha, A. Hamid, M.A. Zargar, A.A. Bhat, M.W. Nasser, M. Haris, S.K. Batra, B. Alshehri, R.S. Al-Baradie, M.A. Mir, N.A. Wani, The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell. Oncol. 44, 1209–1229 (2021)
Acknowledgements
We are indebted to Dr. Leandro Cerchietti, Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, USA, for providing FX1 and for critical discussions. We are grateful to Dr. P. Longoni for his excellent technical assistance and support in the cytofluorimetric analyses, and L. Mameli for her excellent assistance at the Fondazione IRCCS Istituto Nazionale dei Tumori di Milano.
Funding
This work has been supported by: -BANDO RICERCA STRATEGICA ISTITUZIONALE-2016 “Molecular and phenotypic landascape of high-grade breast cancer (HGBC) tumor microenvironment: characterization and reconversion of the immunosuppressive tumor-surrounding stroma and cell compartment” to MDN; -MICROTHER– “Improving immunotherapy of solid tumors by targeting the immunosuppressive tumor microenvironment: from preclinical "proof-of-concept" to the development of phase I studies” to MDN; - Associazione Italiana Ricerca Cancro (AIRC) to S.M. Pupa.
Author information
Authors and Affiliations
Contributions
FDS, TV, SF and LC performed most experiments; FDS, SLR-C and LC performed the statistical analyses; FDS, SLR-C, SMP and MDN designed the study; FDS, SLR-C and SMP integrated the results and drafted the manuscript; FDS, SLR-C, LC, GF, SMP and MDN assisted with data analyses and interpretation; ET and FDB revised the manuscript; SMP and MDN were responsible for the study supervision. All authors have read and approved the final submitted manuscript.
Corresponding author
Ethics declarations
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
All authors have agreed to publish this manuscript.
Competing interests
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Below is the link to the electronic supplementary material.
13402_2022_663_MOESM2_ESM.pdf
Supplementary file2: Correlation plot between protein and mRNA expression levels in BC from Krug et. al, Cell 2020 (upper side) and TCGA (lower side) samples for Bcl6, Numb and Hes1 genes. In all cases correlations were computed by Pearson metric (PDF 112 KB)
13402_2022_663_MOESM3_ESM.pdf
Supplementary file3: (a-d) WB analysis of protein extracts from CTRL, siSCR- or siBCL6-transduced SUM149 (a) and SUM159 (c) TNBC cell lines to evaluate BCL6 expression. β-Actin was used to normalize protein loading. (b, d) Densitometric analyses of the plots shown in a and c. (e, f) Cell counts of CTRL, siBCL6-SUM149 (e) and siBcl6-SUM159 (f) cells evaluated 48 h after transient BCL6 silencing. Data were normalized to proper siSCR samples. Column bars indicate the means ± SD (n = 3). Significance was calculated by Student’s t-test. (g, h) Cell counts of CTRL, shBCL6-SUM149 (g) and shBCL6-SUM159 (h) cells evaluated at different time points. Data were normalized to proper shSCR samples. Column bars indicate the means ± SD (n = 3). Significance was calculated by Student’s t-test (PDF 50 KB)
13402_2022_663_MOESM4_ESM.pdf
Supplementary file4: CSC-related biomarker evaluation in siBCL6- or matched siSCR--knockdown SUM149 or SUM159 cells. (a, b) FACS analysis of CD44+ (a) or ALDH+ (b) cell subsets compared to matched isotype-stained cells and DEAB control samples (PDF 250 KB)
13402_2022_663_MOESM5_ESM.pdf
Supplementary file5: FX1 IC50 titration. (a-d) IC50 values of the FX1 inhibitor in SUM149-derived (a, c) or SUM159-derived (b, d) mammospheres (a, b) or their 2D cell counterparts (c, d) (PDF 32 KB)
13402_2022_663_MOESM6_ESM.pdf
Supplementary file6: (a, b) Percentage of the MFE of SUM159 (a) or SUM149 (b) cells treated with FX1 or DMSO. Column bars indicate the means ± SD (n = 3). Significance was calculated by the Student’s t-test. (c, d) Microphotographs showing SUM159-derived (c) or SUM149-derived (d) mammospheres cultured for seven days in presence of FX1 or DMSO (magnification 20x) (PDF 24 KB)
13402_2022_663_MOESM7_ESM.pdf
Supplementary file7: BCL6 binding to positive and negative control genomic regions. (a, b) ChIP analysis of NT or FX1- or DMSO-treated SUM149 (a) or SUM159 (b) cell lines for 12 h or 24 h at the genomic loci identified as region B and the CTRL region. Column bars indicate the means ± SD (n = 3). The black column represents the IgG background. ChIP results are given as 2.5% ChIP compared to the input material. Screen shots were taken from the UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly and represent the region B genomic locus (c) or the CTRL region (d) (PDF 110 KB)
Rights and permissions
About this article
Cite this article
De Santis, F., Romero-Cordoba, S.L., Castagnoli, L. et al. BCL6 and the Notch pathway: a signaling axis leading to a novel druggable biotarget in triple negative breast cancer. Cell Oncol. 45, 257–274 (2022). https://doi.org/10.1007/s13402-022-00663-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13402-022-00663-y
Keywords
- BCL6
- TNBC
- CSCs
- Notch signaling
- Targeted therapy
- Polycomb repressor complex