Skip to main content

Advertisement

Log in

BCL6 and the Notch pathway: a signaling axis leading to a novel druggable biotarget in triple negative breast cancer

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The transcriptional repressor B-cell lymphoma 6 (BCL6) is dysregulated in several neoplasms, but its role in triple negative breast cancer (TNBC), a highly aggressive subtype which lacks effective treatment, is unclear. The presence of intratumoral cancer stem cells (CSCs) is a main cause of tumor relapse. The Notch signaling pathway is crucial for regulating CSC self-renewal and promoting breast cancer (BC) development and resistance to anticancer therapies. Here, we investigated signaling cascades of BCL6 in the CSC compartment of TNBCs, and the mechanisms that govern its activity, mainly through Notch signaling.

Methods

Gene expression, somatic copy number alterations and clinical data from the Cancer Genome Atlas and METABRIC were accessed through the Xena and cbioportal browsers. Public transcriptome profiles from TNBC datasets were retrieved from the Gene Expression Omnibus. Mammosphere formation efficiency was calculated after BCL6 knockdown via transient siRNA transfection, stable silencing or pharmacological inhibition. The effects exhibited via BCL6 inhibition in putative TNBC stem-like cells were evaluated by immunofluorescence and qRT-PCR analyses. Chromatin immunoprecipitation experiments were performed to validate a putative BCL6 responsive element located in the first intron of the Numb gene and to define the circuit of corepressors engaged by BCL6 following its inhibition. Immunoprecipitation assays were carried out to investigate a novel interaction at the basis of BCL6 control of CSC activity in TNBC.

Results

In silico analyses of benchmarked public datasets revealed a significant enrichment of BCL6 in cancer stemness related pathways, particularly of Notch signaling in TNBC. In vitro stable inhibition of BCL6 significantly reduced tumor cell growth and, accordingly, we found that the mammosphere formation efficiency of BCL6 silenced cells was significantly impaired by pharmacological inhibition of Notch signaling. BCL6 was found to be expressed at significantly higher levels in TNBC mammospheres than in their adherent counterparts, and loss of BCL6 function significantly decreased mammosphere formation with preferential targeting of CD44-positive versus ALDH-positive stem-like cells. Functional interplay between BCL6 and the chromatin remodeling factor EZH2 triggered the BCL6/Notch stemness signaling axis via inhibition of Numb transcription.

Conclusions

Our results may be instrumental for the prospective design of combination treatment strategies that selectively target novel TNBC-associated biomarker(s) whose activity is implicated in the regulation of cancer stemness (such as BCL6) and molecules in developmentally conserved signaling pathways (such as Notch) to achieve long-lasting tumor control and improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data supporting the conclusions of this article are included within the article and its additional files. TCGA data from RNA-seq (HiSeq counts) and somatic CN alterations were accessed using the Xena browser. METABRIC-processed data were retrieved from BioPortal. Normalized data and clinical information including TNBC datasets were retrieved from GEO. The ChIP seq data relative to the HER2-positive SKBR3 BC cell line analyzed in the present study are available upon request from the corresponding author of [6].

Abbreviations

BCL6:

B-cell lymphoma protein 6

TNBC:

Triple negative breast cancer

CSCs:

Cancer stem cells

BC:

Breast cancer

2nd gen:

Second generation of mammospheres

SMRT:

Silencing mediator for retinoid and thyroid receptors

BCoR:

BCL6 corepressor

HDACs:

Histone deacetylases

EZH2:

Enhancer of zeste homolog 2

HIF-1α:

Hypoxia-inducible factor 1-alpha

EMT:

Epithelial–mesenchymal transition

ZEB1:

Zinc finger e-box binding homeobox 1

Wnt:

Wingless-related integration site

RI-BPI:

Retro-inverso BCL6 peptide inhibitor

BTB:

Broad-complex, tramtrack, and bric-à-brac

TCGA:

The cancer genome atlas

CN:

Copy number

GEO:

Gene expression omnibus datasets

IQR:

Interquartile range

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2:

Human epidermal growth factor receptor 2

GSEA:

Gene set enrichment analysis

MSigDB:

Molecular signature database

ssGSEA:

Single-sample GSEA

IC50 :

The concentration that inhibits 50% of cell growth

DMSO:

Dimethyl sulfoxide

EED:

Embryonic ectoderm development

PRC2:

Polycomb repressive complex 2

H3K27me3:

Tri-methylated lysine 27 of histone H3

MFE:

Mammosphere-forming efficiency

qRT-PCR:

Quantitative real-time PCR

siRNA:

Small RNA interference

siBCL6:

SiRNAs specific for BCL6

siSCR:

Scramble control siRNA

shRNA:

Short hairpin RNA interference

shBCL6-SUM149 and shBCL6-SUM159:

Stable BCL6-silenced SUM149 and SUM159 cells

shSCR-SUM149 and shSCR-SUM159:

Stable scramble control-silenced SUM149 and SUM159 cells

GFP:

Green fluorescent protein

FACS:

Fluorescence activated cell sorting

MFI:

Mean fluorescence intensity

ALDH:

Aldehyde dehydrogenases

BAAA:

BODIPY-aminoacetaldehyde

DEAB:

Diethylaminobenzaldehyde

ALDH+ :

ALDH-positive cells

ALDH-:

ALDH-negative cells

FITC:

Fluorescein isothiocyanate

WB:

Western blot

IP:

Immunoprecipitation

ChIP:

Chromatin immunoprecipitation

FDR:

False discovery rate

BL1:

Basal-like 1 BC subtype

BL2:

Basal-like 2 BC subtype

IM:

Immunomodulatory BC subtype

LAR:

Luminal androgen receptor BC subtype

M:

Mesenchymal BC subtype

UNS:

Unstable BC subtype

mRNA:

Messenger RNA

3D:

3-Dimensional mammosphere-forming cell culture conditions

2D:

2-Dimension adherent cell culture conditions

CD44+ :

CD44-positive cells

CTRL:

Parental control

ChIP seq:

Chromatin immunoprecipitation by deep sequencing

NT:

Untreated cells

References

  1. C. Denkert, C. Liedtke, A. Tutt, G. Von Minckwitz, Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 389, 2430–2442 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. A.C. Garrido-Castro, N.U. Lin, K. Polyak, Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov. 9, 176–198 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. Liedtke, C. Mazouni, K.R. Hess, F. Andre, A. Tordai, J.A. Mejia, W.F. Symmans, A.M. Gonzalez-Angulo, B. Hennessy, M. Green, M. Cristofanilli, G.N. Hortobagyi, L. Pusztai, Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26, 1275–1281 (2008)

    Article  PubMed  Google Scholar 

  4. N.U. Lin, A. Vanderplas, M.E. Hughes, R.L. Theriault, S.B. Edge, Y.N. Wong, D.W. Blayney, J.C. Niland, E.P. Winer, J.C. Weeks, Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 118, 5463–5472 (2012)

    Article  PubMed  Google Scholar 

  5. M.K. Malhotra, L.A. Emens, The evolving management of metastatic triple negative breast cancer. Semin. Oncol. 47, 229–237 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. S.R. Walker, S. Liu, M. Xiang, M. Nicolais, K. Hatzi, E. Giannopoulou, O. Elemento, L. Cerchietti, A. Melnick, D.A. Frank, The transcriptional modulator BCL6 as a molecular target for breast cancer therapy. Oncogene 34, 1073–1082 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. M.G. Cardenas, E. Oswald, W. Yu, F. Xue, A.D. Mackerell Jr., A.M. Melnick, The expanding role of the BCL6 oncoprotein as a cancer therapeutic target. Clin. Cancer Res. 23, 885–893 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. C.C. Chang, B.H. Ye, R.S. Chaganti, R. Dalla-Favera, BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl. Acad. Sci. USA 93, 6947–6952 (1996)

  9. K.F. Ahmad, A. Melnick, S. Lax, D. Bouchard, J. Liu, C.L. Kiang, S. Mayer, S. Takahashi, J.D. Licht, G.G. Privé, Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol. Cell 12, 1551–1564 (2003)

  10. G. Cattoretti, L. Pasqualucci, G. Ballon, W. Tam, S.V. Nandula, Q. Shen, T. Mo, V.V. Murty, R. Dalla-Favera, Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455. (2005). https://doi.org/10.1016/j.ccr.2005.03.037

  11. W. Ci, J.M. Polo, A. Melnick, B-cell lymphoma 6 and the molecular pathogenesis of diffuse large B-cell lymphoma. Curr. Opin. Hematol. 15, 381–390 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Logarajah, P. Hunter, M. Kraman, D. Steele, S. Lakhani, L. Bobrow, A. Venkitaraman, S. Wagner, BCL-6 is expressed in breast cancer and prevents mammary epithelial differentiation. Oncogene 22, 5572–5578 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. R. Bos, P.J. Van Diest, P. van der Groep, A.E. Greijer, M.A. Hermsen, I. Heijnen, G.A. Meijer, J.P. Baak, H.M. Pinedo, E. van der Wall, A. Shvarts, Protein expression of B-cell lymphoma gene 6 (BCL-6) in invasive breast cancer is associated with cyclin D1 and hypoxia-inducible factor-1alpha (HIF-1alpha). Oncogene 22, 8948–8951 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Q. Wu, X. Liu, H. Yan, Y.H. He, S. Ye, X.W. Cheng, G.L. Zhu, W.Y. Wu, X.N. Wang, X.J. Kong, X.C. Xu, P.E. Lobie, T. Zhu, Z.S. Wu, B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells. BMC Cancer 14, 418. (2014) https://doi.org/10.1186/1471-2407-14-418

  15. J.M. Yu, W. Sun, F. Hua, J. Xie, H. Lin, D.D. Zhou, Z.W. Hu, BCL6 induces EMT by promoting the ZEB1-mediated transcription repression of E-cadherin in breast cancer cells. Cancer Lett. 365, 190–200 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. S. Liu, Y. Cong, D. Wang, Y. Sun, L. Deng, Y. Liu, R. Martin-Trevino, L. Shang, S.P. McDermott, M.D. Landis, S. Hong, A. Adams, R. D’Angelo, C. Ginestier, E. Charafe-Jauffret, S.G. Clouthier, D. Birnbaum, S.T. Wong, M. Zhan, J.C. Chang, M.S. Wicha, Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2, 78–91 (2014)

    Article  CAS  Google Scholar 

  17. L. Castagnoli, F. De Santis, T. Volpari, C. Vernieri, E. Tagliabue, M. Di Nicola, S.M. Pupa, Cancer stem cells: Devil or savior-looking behind the scenes of immunotherapy failure. Cells 9, E555 (2020)

    Article  PubMed  Google Scholar 

  18. D.L. Dragu, L.G. Necula, C. Bleotu, C.C. Diaconu, M. Chivu-Economescu, Therapies targeting cancer stem cells: Current trends and future challenges. World J. Stem Cells 7, 1185–1201 (2015)

  19. T.M. Fernando, R. Marullo, G.B. Pera, J.M. Phillip, S.N. Yang, G. Lundell-Smith, I. Torregroza, H. Ahn, T. Evans, B. Gyorffy, G.G. Privé, M. Hirano, A.M. Melnick, L. Cerchietti, BCL6 evolved to enable stress tolerance in vertebrates and is broadly required by cancer cells to adapt to stress. Cancer Discov. 9, 662–679 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Pece, S. Confalonieri, R. Romano, P.P. Di Fiore, NUMB-ing down cancer by more than just a NOTCH. Biochim. Biophys. Acta 1815, 26–43 (2011)

  21. E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, A. Jacobsen, C.J. Byrne, M.L. Heuer, E. Larsson, Y. Antipin, B. Reva, A.P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012)

    Article  PubMed  Google Scholar 

  22. S. Hanzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data. BMC. Bioinform. 14, 7 (2013)

    Article  Google Scholar 

  23. K. Krug, E.J. Jaehnig, S. Satpathy, L. Blumenberg, A. Karpova, M. Anurag, G. Miles, P. Mertins, Y. Geffen, L.C. Tang, D.I. Heiman, S. Cao, Y.E. Maruvka, J.T. Lei, C. Huang, R.B. Kothadia, A. Colaprico, C. Birger, J. Wang, Y. Dou, B. Wen, Z. Shi, Y. Liao, M. Wiznerowicz, M.A. Wyczalkowski, X.S. Chen, J.J. Kennedy, A.G. Paulovich, M. Thiagarajan, C.R. Kinsinger, T. Hiltke, E.S. Boja, M. Mesri, A.I. Robles, H. Rodriguez, T.F. Westbrook, L. Ding, G. Getz, K.R. Clauser, D. Fenyo, K.V. Ruggles, B. Zhang, D.R. Mani, S.A. Carr, M.J. Ellis, M.A. Gillette, Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 183, 1436–1456 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. W. Qi, K. Zhao, J. Gu, Y. Huang, Y. Wang, H. Zhang, M. Zhang, J. Zhang, Z. Yu, L. Li, L. Teng, S. Chuai, C. Zhang, M. Zhao, H. Chan, Z. Chen, D. Fang, Q. Fei, L. Feng, L. Feng, Y. Gao, H. Ge, X. Ge, G. Li, A. Lingel, Y. Lin, Y. Liu, F. Luo, M. Shi, L. Wang, Z. Wang, Y. Yu, J. Zeng, C. Zeng, L. Zhang, Q. Zhang, S. Zhou, C. Oyang, P. Atadja, E. Li, An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat. Chem. Biol. 13, 381–388 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. L. Castagnoli, G.C. Ghedini, A. Koschorke, T. Triulzi, M. Dugo, P. Gasparini, P. Casalini, A. Palladini, M. Iezzi, A. Lamolinara, P.L. Lollini, P. Nanni, C. Chiodoni, E. Tagliabue, S.M. Pupa, Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer. Oncogene 36, 1721–1732 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. C.G.A. Network, Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012)

    Article  Google Scholar 

  27. C. Curtis, S.P. Shah, S.F. Chin, G. Turashvili, O.M. Rueda, M.J. Dunning, D. Speed, A.G. Lynch, S. Samarajiwa, Y. Yuan, S. Graf, G. Ha, G. Haffari, A. Bashashati, R. Russell, S. McKinney, A. Langerod, A. Green, E. Provenzano, G. Wishart, S. Pinder, P. Watson, F. Markowetz, L. Murphy, I. Ellis, A. Purushotham, A.L. Borresen-Dale, J.D. Brenton, S. Tavare, C. Caldas, S. Aparicio, The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. B.D. Lehmann, J.A. Bauer, X. Chen, M.E. Sanders, A.B. Chakravarthy, Y. Shyr, J.A. Pietenpol, Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E. Lim, D. Wu, B. Pal, T. Bouras, M.L. Asselin-Labat, F. Vaillant, H. Yagita, G.J. Lindeman, G.K. Smyth, J.E. Visvader, Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 12, R21 (2010)

  30. C.J. Creighton, X. Li, M. Landis, J.M. Dixon, V.M. Neumeister, A. Sjolund, D.L. Rimm, H. Wong, A. Rodriguez, J.I. Herschkowitz, C. Fan, X. Zhang, X. He, A. Pavlick, M.C. Gutierrez, L. Renshaw, A.A. Larionov, D. Faratian, S.G. Hilsenbeck, C.M. Perou, M.T. Lewis, J.M. Rosen, J.C. Chang, Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA 106, 13820–13825 (2009)

  31. R. Sabatier, P. Finetti, N. Cervera, E. Lambaudie, B. Esterni, E. Mamessier, A. Tallet, C. Chabannon, J.M. Extra, J. Jacquemier, P. Viens, D. Birnbaum, F. Bertucci, A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res. Treat. 126, 407–420 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. P. Jézéquel, D. Loussouarn, C. Guérin-Charbonnel, L. Campion, A. Vanier, W. Gouraud, H. Lasla, C. Guette, I. Valo, V. Verrièle, M. Campone, Gene-expression molecular subtyping of triple-negative breast cancer tumours: Importance of immune response. Breast Cancer Res. 17, 43 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  33. A. Prat, J.S. Parker, O. Karginova, C. Fan, C. Livasy, J.I. Herschkowitz, X. He, C.M. Perou, Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. Al Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988 (2003)

  35. C. Ginestier, M.H. Hur, E. Charafe-Jauffret, F. Monville, J. Dutcher, M. Brown, J. Jacquemier, P. Viens, C.G. Kleer, S. Liu, A. Schott, D. Hayes, D. Birnbaum, M.S. Wicha, G. Dontu, ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M.G. Cardenas, W. Yu, W. Beguelin, M.R. Teater, H. Geng, R.L. Goldstein, E. Oswald, K. Hatzi, S.N. Yang, J. Cohen, R. Shaknovich, K. Vanommeslaeghe, H. Cheng, D. Liang, H.J. Cho, J. Abbott, W. Tam, W. Du, J.P. Leonard, O. Elemento, L. Cerchietti, T. Cierpicki, F. Xue, A.D. Mackerell Jr., A.M. Melnick, Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma. J. Clin. Invest. 126, 3351–3362 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  37. P. Ntziachristos, J.S. Lim, J. Sage, I. Aifantis, From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 25, 318–334 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C.J. Chang, J.Y. Yang, W. Xia, C.T. Chen, X. Xie, C.H. Chao, W.A. Woodward, J.M. Hsu, G.N. Hortobagyi, M.C. Hung, EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 19, 86–100 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M.E. Gonzalez, H.M. Moore, X. Li, K.A. Toy, W. Huang, M.S. Sabel, K.M. Kidwell, C.G. Kleer, EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc. Natl. Acad. Sci. USA 111, 3098–3103 (2014)

  40. W. Beguelin, M. Teater, M.D. Gearhart, M.T. Calvo Fernandez, R.L. Goldstein, M.G. Cardenas, K. Hatzi, M. Rosen, H. Shen, C.M. Corcoran, M.Y. Hamline, R.D. Gascoyne, R.L. Levine, O. Abdel-Wahab, J.D. Licht, R. Shaknovich, O. Elemento, V.J. Bardwell, A.M. Melnick, EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell 30, 197–213 (2016)

  41. L. Ang, L. Zheng, J. Wang, J. Huang, H.G. Hu, Q. Zou, Y. Zhao, Q.M. Liu, M. Zhao, Z.S. Wu, Expression of and correlation between BCL6 and ZEB family members in patients with breast cancer. Exp. Ther. Med. 14, 3985–3992 (2017)

    PubMed  PubMed Central  Google Scholar 

  42. C. Hurtz, K. Hatzi, L. Cerchietti, M. Braig, E. Park, Y.M. Kim, S. Herzog, P. Ramezani-Rad, H. Jumaa, M.C. Muller, W.K. Hofmann, A. Hochhaus, B.H. Ye, A. Agarwal, B.J. Druker, N.P. Shah, A.M. Melnick, M. Muschen, BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J. Exp. Med. 208, 2163–2174 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. B. Martin-Castillo, E. Lopez-Bonet, E. Cuyas, G. Vinas, S. Pernas, J. Dorca, J.A. Menendez, Cancer stem cell-driven efficacy of trastuzumab (Herceptin): Towards a reclassification of clinically HER2-positive breast carcinomas. Oncotarget 6, 32317–32338 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  44. C.T. Jordan, M.L. Guzman, M. Noble, Cancer stem cells. N. Engl. J. Med. 355, 1253–1261 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. U. Mehraj, R.A. Ganai, M.A. Macha, A. Hamid, M.A. Zargar, A.A. Bhat, M.W. Nasser, M. Haris, S.K. Batra, B. Alshehri, R.S. Al-Baradie, M.A. Mir, N.A. Wani, The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell. Oncol.  44, 1209–1229 (2021)

Download references

Acknowledgements

We are indebted to Dr. Leandro Cerchietti, Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, USA, for providing FX1 and for critical discussions. We are grateful to Dr. P. Longoni for his excellent technical assistance and support in the cytofluorimetric analyses, and L. Mameli for her excellent assistance at the Fondazione IRCCS Istituto Nazionale dei Tumori di Milano.

Funding

This work has been supported by: -BANDO RICERCA STRATEGICA ISTITUZIONALE-2016 “Molecular and phenotypic landascape of high-grade breast cancer (HGBC) tumor microenvironment: characterization and reconversion of the immunosuppressive tumor-surrounding stroma and cell compartment” to MDN; -MICROTHER– “Improving immunotherapy of solid tumors by targeting the immunosuppressive tumor microenvironment: from preclinical "proof-of-concept" to the development of phase I studies” to MDN; - Associazione Italiana Ricerca Cancro (AIRC) to S.M. Pupa.

Author information

Authors and Affiliations

Authors

Contributions

FDS, TV, SF and LC performed most experiments; FDS, SLR-C and LC performed the statistical analyses; FDS, SLR-C, SMP and MDN designed the study; FDS, SLR-C and SMP integrated the results and drafted the manuscript; FDS, SLR-C, LC, GF, SMP and MDN assisted with data analyses and interpretation; ET and FDB revised the manuscript; SMP and MDN were responsible for the study supervision. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Massimo Di Nicola.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have agreed to publish this manuscript.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 449 KB)

13402_2022_663_MOESM2_ESM.pdf

Supplementary file2: Correlation plot between protein and mRNA expression levels in BC from Krug et. al, Cell 2020 (upper side) and TCGA (lower side) samples for Bcl6, Numb and Hes1 genes. In all cases correlations were computed by Pearson metric (PDF 112 KB)

13402_2022_663_MOESM3_ESM.pdf

Supplementary file3: (a-d) WB analysis of protein extracts from CTRL, siSCR- or siBCL6-transduced SUM149 (a) and SUM159 (c) TNBC cell lines to evaluate BCL6 expression. β-Actin was used to normalize protein loading. (b, d) Densitometric analyses of the plots shown in a and c. (e, f) Cell counts of CTRL, siBCL6-SUM149 (e) and siBcl6-SUM159 (f) cells evaluated 48 h after transient BCL6 silencing. Data were normalized to proper siSCR samples. Column bars indicate the means ± SD (n = 3). Significance was calculated by Student’s t-test. (g, h) Cell counts of CTRL, shBCL6-SUM149 (g) and shBCL6-SUM159 (h) cells evaluated at different time points. Data were normalized to proper shSCR samples. Column bars indicate the means ± SD (n = 3). Significance was calculated by Student’s t-test (PDF 50 KB)

13402_2022_663_MOESM4_ESM.pdf

Supplementary file4: CSC-related biomarker evaluation in siBCL6- or matched siSCR--knockdown SUM149 or SUM159 cells. (a, b) FACS analysis of CD44+ (a) or ALDH+ (b) cell subsets compared to matched isotype-stained cells and DEAB control samples (PDF 250 KB)

13402_2022_663_MOESM5_ESM.pdf

Supplementary file5: FX1 IC50 titration. (a-d) IC50 values of the FX1 inhibitor in SUM149-derived (a, c) or SUM159-derived (b, d) mammospheres (a, b) or their 2D cell counterparts (c, d) (PDF 32 KB)

13402_2022_663_MOESM6_ESM.pdf

Supplementary file6: (a, b) Percentage of the MFE of SUM159 (a) or SUM149 (b) cells treated with FX1 or DMSO. Column bars indicate the means ± SD (n = 3). Significance was calculated by the Student’s t-test. (c, d) Microphotographs showing SUM159-derived (c) or SUM149-derived (d) mammospheres cultured for seven days in presence of FX1 or DMSO (magnification 20x) (PDF 24 KB)

13402_2022_663_MOESM7_ESM.pdf

Supplementary file7: BCL6 binding to positive and negative control genomic regions. (a, b) ChIP analysis of NT or FX1- or DMSO-treated SUM149 (a) or SUM159 (b) cell lines for 12 h or 24 h at the genomic loci identified as region B and the CTRL region. Column bars indicate the means ± SD (n = 3). The black column represents the IgG background. ChIP results are given as 2.5% ChIP compared to the input material. Screen shots were taken from the UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly and represent the region B genomic locus (c) or the CTRL region (d) (PDF 110 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Santis, F., Romero-Cordoba, S.L., Castagnoli, L. et al. BCL6 and the Notch pathway: a signaling axis leading to a novel druggable biotarget in triple negative breast cancer. Cell Oncol. 45, 257–274 (2022). https://doi.org/10.1007/s13402-022-00663-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00663-y

Keywords

Navigation