Skip to main content

Advertisement

Log in

Recombinant adenovirus expressing the fusion protein PD1PVR improves CD8+ T cell-mediated antitumor efficacy with long-term tumor-specific immune surveillance in hepatocellular carcinoma

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Treatment-associated upregulation of suppressive checkpoints and a lack of costimulatory signals compromise the antitumor efficacy of oncolytic virus immunotherapy. Therefore, we aimed to identify highly effective therapeutic targets to provide a proof-of-principle for immune checkpoint together with oncolytic virus-mediated viro-immunotherapy for cancer.

Methods

A fusion protein containing both the extracellular domain of programmed death-1 (PD-1) and the poliovirus receptor (PVR) was designed. Next, the corresponding expression fragment was inserted into the genome of a replication-competent adenovirus to generate Ad5sPD1PVR. The infection, expression, replication and oncolysis of Ad5sPD1PVR were investigated in hepatocellular carcinoma (HCC) cell lines. Immune activation and the antitumor efficacy of Ad5sPD1PVR were examined in HCC tumor models including a humanized immunocompetent mouse model.

Results

Ad5sPD1PVR effectively infected and replicated in HCC cells and secreted sPD1PVR. In a H22 ascitic HCC mouse model, intraperitoneal injection of Ad5sPD1PVR markedly recruited lymphocytes and activated antitumor immune responses. Ad5sPD1PVR exerted a profound antitumor effect on ascitic HCC. Furthermore, we found that Ad5sPD1PVR-H expressing sPD1PVR of human origin exhibited potent antitumor effects in a HCC humanized mouse model. We also found that CD8+ T cells mediated the antitumor effects and long-term tumor-specific immune surveillance induced by Ad5sPD1PVR. Finally, when combined with fludarabine, the antitumor efficacy of Ad5sPD1PVR was found to be further improved in the ascitic HCC model.

Conclusions

From our data we conclude that the newly designed recombinant Ad5sPD1PVR virus significantly enhances CD8+ T cell-mediated antitumor efficacy with long-term tumor-specific immune surveillance in hepatocellular carcinoma, and that fludarabine is a promising therapeutic partner for Ad5sPD1PVR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All data and materials generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. J.M. Llovet, R.K. Kelley, A. Villanueva, A.G. Singal, E. Pikarsky, S. Roayaie, R. Lencioni, K. Koike, J. Zucman-Rossi, R.S. Finn, Hepatocellular carcinoma. Nat Rev Dis Primers 7, 6 (2021)

    Article  Google Scholar 

  2. J.C. Nault, A.L. Cheng, B. Sangro, J.M. Llovet, Milestones in the pathogenesis and management of primary liver cancer. J Hepatol 72, 209–214 (2020)

    Article  Google Scholar 

  3. Z. Yin, X. Li, Immunotherapy for hepatocellular carcinoma. Cancer Lett 470, 8–17 (2020)

    Article  CAS  Google Scholar 

  4. S. Vilarinho, T.H. Taddei, New frontier in liver cancer treatment: oncolytic viral therapy. Hepatology 59, 343–346 (2014)

    Article  Google Scholar 

  5. J. Altomonte, Liver cancer: Sensitizing hepatocellular carcinoma to oncolytic virus therapy. Nat Rev Gastroenterol Hepatol 15, 8–10 (2018)

    Article  Google Scholar 

  6. M.J. Smyth, S.F. Ngiow, A. Ribas, M.W. Teng, Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13, 143–158 (2016)

    Article  CAS  Google Scholar 

  7. J. Li, Y. Lee, Y. Li, Y. Jiang, H. Lu, W. Zang, X. Zhao, L. Liu, Y. Chen, H. Tan, Z. Yang, M.Q. Zhang, T.W. Mak, L. Ni and C. Dong, Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8(+) T cells, Immunity 48, 773–786 e775 (2018)

  8. B.A. Helmink, P.O. Gaudreau, J.A. Wargo, Immune checkpoint blockade across the cancer care continuum. Immunity 48, 1077–1080 (2018)

    Article  CAS  Google Scholar 

  9. M.M. Soldevilla, H. Villanueva, D. Meraviglia-Crivelli, A.P. Menon, M. Ruiz, J. Cebollero, M. Villalba, B. Moreno, T. Lozano, D. Llopiz, A. Pejenaute, P. Sarobe, F. Pastor, ICOS costimulation at the tumor site in combination with CTLA-4 blockade therapy elicits strong tumor immunity. Mol Ther 27, 1878–1891 (2019)

    Article  CAS  Google Scholar 

  10. Y. Kong, L. Zhu, T.D. Schell, J. Zhang, D.F. Claxton, W.C. Ehmann, W.B. Rybka, M.R. George, H. Zeng, H. Zheng, T-cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res 22, 3057–3066 (2016)

    Article  CAS  Google Scholar 

  11. X. Yu, K. Harden, L.C. Gonzalez, M. Francesco, E. Chiang, B. Irving, I. Tom, S. Ivelja, C.J. Refino, H. Clark, D. Eaton, J.L. Grogan, The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10, 48–57 (2009)

    Article  CAS  Google Scholar 

  12. N.A. Manieri, E.Y. Chiang, J.L. Grogan, TIGIT: A key inhibitor of the cancer immunity cycle. Trends Immunol 38, 20–28 (2017)

    Article  CAS  Google Scholar 

  13. J.M. Chauvin, O. Pagliano, J. Fourcade, Z. Sun, H. Wang, C. Sander, J.M. Kirkwood, T.H. Chen, M. Maurer, A.J. Korman, H.M. Zarour, TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest 125, 2046–2058 (2015)

    Article  Google Scholar 

  14. R.J. Johnston, L. Comps-Agrar, J. Hackney, X. Yu, M. Huseni, Y. Yang, S. Park, V. Javinal, H. Chiu, B. Irving, D.L. Eaton, J.L. Grogan, The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26, 923–937 (2014)

    Article  CAS  Google Scholar 

  15. F.S. Hodi, S.J. O’Day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J.C. Hassel, W. Akerley, A.J. van den Eertwegh, J. Lutzky, P. Lorigan, J.M. Vaubel, G.P. Linette, D. Hogg, C.H. Ottensmeier, C. Lebbe, C. Peschel, I. Quirt, J.I. Clark, J.D. Wolchok, J.S. Weber, J. Tian, M.J. Yellin, G.M. Nichol, A. Hoos, W.J. Urba, Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363, 711–723 (2010)

    Article  CAS  Google Scholar 

  16. S.L. Topalian, F.S. Hodi, J.R. Brahmer, S.N. Gettinger, D.C. Smith, D.F. McDermott, J.D. Powderly, R.D. Carvajal, J.A. Sosman, M.B. Atkins, P.D. Leming, D.R. Spigel, S.J. Antonia, L. Horn, C.G. Drake, D.M. Pardoll, L. Chen, W.H. Sharfman, R.A. Anders, J.M. Taube, T.L. McMiller, H. Xu, A.J. Korman, M. Jure-Kunkel, S. Agrawal, D. McDonald, G.D. Kollia, A. Gupta, J.M. Wigginton, M. Sznol, Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366, 2443–2454 (2012)

    Article  CAS  Google Scholar 

  17. D. Zamarin, R.B. Holmgaard, S.K. Subudhi, J.S. Park, M. Mansour, P. Palese, T. Merghoub, J.D. Wolchok and J.P. Allison, Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy, Sci Transl Med 6, 226ra232 (2014)

  18. L. Chen, X. Han, Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125, 3384–3391 (2015)

    Article  Google Scholar 

  19. K. Harrington, D.J. Freeman, B. Kelly, J. Harper, J.C. Soria, Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 18, 689–706 (2019)

    Article  CAS  Google Scholar 

  20. M.A. Postow, Managing immune checkpoint-blocking antibody side effects, Am Soc Clin Oncol Educ Book, 76–83 (2015)

  21. J. Naidoo, D.B. Page, B.T. Li, L.C. Connell, K. Schindler, M.E. Lacouture, M.A. Postow, J.D. Wolchok, Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 27, 1362 (2016)

    Article  CAS  Google Scholar 

  22. J.A. Marin-Acevedo, R.M. Chirila, R.S. Dronca, Immune checkpoint inhibitor toxicities. Mayo Clin Proc 94, 1321–1329 (2019)

    Article  CAS  Google Scholar 

  23. N. Woller, E. Gurlevik, B. Fleischmann-Mundt, A. Schumacher, S. Knocke, A.M. Kloos, M. Saborowski, R. Geffers, M.P. Manns, T.C. Wirth, S. Kubicka, F. Kuhnel, Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 23, 1630–1640 (2015)

    Article  CAS  Google Scholar 

  24. R.R. Ji, S.D. Chasalow, L. Wang, O. Hamid, H. Schmidt, J. Cogswell, S. Alaparthy, D. Berman, M. Jure-Kunkel, N.O. Siemers, J.R. Jackson, V. Shahabi, An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61, 1019–1031 (2012)

    Article  CAS  Google Scholar 

  25. S. Spranger, R.M. Spaapen, Y. Zha, J. Williams, Y. Meng, T.T. Ha and T.F. Gajewski, Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells, Sci Transl Med 5, 200ra116 (2013)

  26. S. Gujar, J.G. Pol, Y. Kim, P.W. Lee, G. Kroemer, Antitumor benefits of antiviral immunity: An underappreciated aspect of oncolytic virotherapies. Trends Immunol 39, 209–221 (2018)

    Article  CAS  Google Scholar 

  27. M.C. Perez, J.T. Miura, S.M.H. Naqvi, Y. Kim, A. Holstein, D. Lee, A.A. Sarnaik, J.S. Zager, Talimogene laherparepvec (TVEC) for the treatment of advanced melanoma: A single-institution experience. Ann Surg Oncol 25, 3960–3965 (2018)

    Article  Google Scholar 

  28. T.D. de Gruijl, A.B. Janssen, V.W. van Beusechem, Arming oncolytic viruses to leverage antitumor immunity. Expert Opin Biol Ther 15, 959–971 (2015)

    Article  Google Scholar 

  29. M.Y. Bartee, K.M. Dunlap, E. Bartee, Tumor-localized secretion of soluble PD1 enhances oncolytic virotherapy. Cancer Res 77, 2952–2963 (2017)

    Article  CAS  Google Scholar 

  30. S. Parviainen, M. Ahonen, I. Diaconu, A. Kipar, M. Siurala, M. Vaha-Koskela, A. Kanerva, V. Cerullo, A. Hemminki, GMCSF-armed vaccinia virus induces an antitumor immune response. Int J Cancer 136, 1065–1072 (2015)

    Article  CAS  Google Scholar 

  31. Y.S. Lee, J.H. Kim, K.J. Choi, I.K. Choi, H. Kim, S. Cho, B.C. Cho, C.O. Yun, Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7–1 in an immunocompetent murine model. Clin Cancer Res 12, 5859–5868 (2006)

    Article  CAS  Google Scholar 

  32. F. Yu, X. Wang, Z.S. Guo, D.L. Bartlett, S.M. Gottschalk, X.T. Song, T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 22, 102–111 (2014)

    Article  CAS  Google Scholar 

  33. T. Speck, J.P.W. Heidbuechel, R. Veinalde, D. Jaeger, C. von Kalle, C.R. Ball, G. Ungerechts, C.E. Engeland, Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin Cancer Res 24, 2128–2137 (2018)

    Article  CAS  Google Scholar 

  34. C.J. LaRocca, J. Han, T. Gavrikova, L. Armstrong, A.R. Oliveira, R. Shanley, S.M. Vickers, M. Yamamoto, J. Davydova, Oncolytic adenovirus expressing interferon alpha in a syngeneic Syrian hamster model for the treatment of pancreatic cancer. Surgery 157, 888–898 (2015)

    Article  Google Scholar 

  35. K. Twumasi-Boateng, J.L. Pettigrew, Y.Y.E. Kwok, J.C. Bell, B.H. Nelson, Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer 18, 419–432 (2018)

    Article  CAS  Google Scholar 

  36. Y. Zhang, H. Zhang, M. Wei, T. Mou, T. Shi, Y. Ma, X. Cai, Y. Li, J. Dong, J. Wei, Recombinant adenovirus expressing a soluble fusion protein PD-1/CD137L subverts the suppression of CD8(+) T cells in HCC. Mol Ther 27, 1906–1918 (2019)

    Article  CAS  Google Scholar 

  37. J. Niemann, F. Kuhnel, Oncolytic viruses: adenoviruses. Virus Genes 53, 700–706 (2017)

    Article  CAS  Google Scholar 

  38. H. Zhang, Y. Zhang, J. Dong, B. Li, C. Xu, M. Wei, J. Wu, J. Wei, Recombinant oncolytic adenovirus expressing a soluble PVR elicits long-term antitumor immune surveillance. Mol Ther Oncolytics 20, 12–22 (2021)

    Article  CAS  Google Scholar 

  39. U. Hegde, A. Chhabra, S. Chattopadhyay, R. Das, S. Ray, N.G. Chakraborty, Presence of low dose of fludarabine in cultures blocks regulatory T cell expansion and maintains tumor-specific cytotoxic T lymphocyte activity generated with peripheral blood lymphocytes. Pathobiology 75, 200–208 (2008)

    Article  Google Scholar 

  40. G. Meng, Z. Fei, M. Fang, B. Li, A. Chen, C. Xu, M. Xia, D. Yu, J. Wei, Fludarabine as an adjuvant improves Newcastle Disease Virus-mediated antitumor immunity in hepatocellular carcinoma. Mol Ther Oncolytics 13, 22–34 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Translational Medicine Core Facilities of Nanjing University for instrumental support.

Funding

This work was funded by the National Natural Science Foundation of China (81773255, 81972888, 81700037 and 81472820) and the Primary Research & Development Plan of Jiangsu Province (BE2018701).

Author information

Authors and Affiliations

Authors

Contributions

J. WEI conceived and designed the study. J. WEI and J. WU supervised the project. H.Z., Y.Z. and J.D. performed the experiments and analyzed the data. H.Z., J. WU and J. WEI wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junhua Wu or Jiwu Wei.

Ethics declarations

Competing interests

The authors declare no potential conflicts of interest.

Ethics approval and consent to participate

All animal experiments were conducted with approval of the Ethics Committee of Nanjing University Medical School. Animal welfare was closely monitored in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Consent for publication

No consent was involved in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Y., Dong, J. et al. Recombinant adenovirus expressing the fusion protein PD1PVR improves CD8+ T cell-mediated antitumor efficacy with long-term tumor-specific immune surveillance in hepatocellular carcinoma. Cell Oncol. 44, 1243–1255 (2021). https://doi.org/10.1007/s13402-021-00633-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00633-w

Keywords

Navigation