Skip to main content

Advertisement

Log in

CDK7 blockade suppresses super‐enhancer‐associated oncogenes in bladder cancer

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Transcriptional addiction plays a pivotal role in maintaining the hallmarks of cancer cells. Thus, targeting super-enhancers (SEs), which modulate the transcriptional activity of oncogenes, has become an attractive strategy for cancer therapy. As yet, however, the molecular mechanisms of this process in bladder cancer (BC) remain to be elucidated. Here, we aimed to provide detailed information regarding the SE landscape in BC and to investigate new potential pharmaceutical targets for BC therapy.

Methods

We employed THZ1 as a potent and specific CDK7 inhibitor. In vitro and in vivo studies were carried out to investigate the anticancer and apoptosis-inducing effects of THZ1 on BC cells. Whole-transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to investigate the mechanism and function of SE-linked oncogenic transcription in BC cells.

Results

We found that THZ1 serves as an effective and potent inhibitor with suppressive activity against BC cells. An integrative analysis of THZ1-sensitive and SE-associated oncogenes yielded potential new pharmaceutical targets, including DDIT4, B4GALT5, PSRC1 and MED22. Combination treatment with THZ1 and the DDIT4 inhibitor rapamycin effectively suppressed BC cell growth. In addition, we found that THZ1 and rapamycin sensitized BC cells to conventional chemotherapy.

Conclusions

Our data indicate that exploring BC gene regulatory mechanisms associated with SEs through integrating RNA-seq and ChIP-seq data improves our understanding of BC biology and provides a basis for innovative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. MillerA, Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019)

    Article  PubMed  Google Scholar 

  2. S. Antoni, J. Ferlay, I. Soerjomataram, A. Znaor, A. Jemal, F. Bray, Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71, 96–108 (2017)

    Article  PubMed  Google Scholar 

  3. N. Howlader, K.M. Na, D. Miller, A. Brest, M. Yu, J. Ruhl, Z. Tatalovich, A. Mariotto, D. Lewis, H. Chen, SEER cancer statistics review, 1975–2016. Natl. Cancer Inst. 26,1423-37 (2019)

  4. J.I. Warrick, G. Sjödahl, M. Kaag, J.D. Raman, S. Merrill, L. Shuman, G. Chen, V. Walter, D.J. DeGraff, Intratumoral heterogeneity of bladder cancer by molecular subtypes and histologic variants. Eur. Urol. 75, 18–22 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. J.E. Bradner, D. Young, R.A. Hnisz, Transcriptional addiction in cancer. Cell 168, 629–643 (2017)

    CAS  Google Scholar 

  7. T.I. Lee, R.A. Young, Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B. Donati, E. Lorenzini, A. Ciarrocchi, BRD4 and cancer: going beyond transcriptional regulation. Mol. Cancer 17, 164 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Sengupta, R.E. George, Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer 3, 269–281 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Yuan, Y.-Y. Jiang, A. Mayakonda, M. Huang, L.-W. Ding, H. Lin, F. Yu, Y. Lu, T.K. Loh, M. Chow, Super-enhancers promote transcriptional dysregulation in nasopharyngeal carcinoma. Cancer Res. 77, 6614–6626 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. L. Lin, M. Huang, X. Shi, A. Mayakonda, K. Hu, Y.-Y. Jiang, X. Guo, L. Chen, B. Pang, N. Doan, Super-enhancer-associated MEIS1 promotes transcriptional dysregulation in Ewing sarcoma in co-operation with EWS-FLI1. Nucleic Acids Res. 47, 1255–1267 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Wang, T. Zhang, N. Kwiatkowski, B.J. Abraham, T.I. Lee, S. Xie, H. Yuzugullu, T. Von, H. Li, Z. Lin, CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 163, 174–186 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Chou, D.A. Quigley, T.M. Robinson, F.Y. FengA, A. Ashworth, Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discov. 10, 351–370 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. B.-B. Li, B. Wang, C.-M. Zhu, D. Tang, J. Pang, J. Zhao, C.-H. Sun, M.-J. Qiu, Z.-R. Qian, Cyclin-dependent kinase 7 inhibitor THZ1 in cancer therapy. Chronic Dis. Transl. Med. 5, 155–169 (2019)

    PubMed  PubMed Central  Google Scholar 

  15. K.A. Nilson, J. Guo, M.E. Turek, J.E. Brogie, E. Delaney, D.S. Luse, D.H. Price, THZ1 reveals roles for Cdk7 in co-transcriptional capping and pausing. Mol. Cell 59, 576–587 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N. Kwiatkowski, T. Zhang, P.B. Rahl, B.J. Abraham, J. Reddy, S.B. Ficarro, A. Dastur, A. Amzallag, S. Ramaswamy, B. Tesar, Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Wang, R. Zhang, Z. Lin, S. Zhang, Y. Chen, J. Tang, J. Hong, X. Zhou, Y. Zong, Y. Xu, CDK7 inhibitor THZ1 enhances antiPD-1 therapy efficacy via the p38α/MYC/PD-L1 signaling in non-small cell lung cancer. J. Hematol. Oncol. 13, 1–16 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. D. Hnisz, B.J. Abraham, T.I. Lee, A. Lau, V. Saint-André, A.A. Sigova, H.A. Hoke, R.A. Young, Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. P. Thandapani, Super-enhancers in cancer. Pharmacol. Ther. 199, 129–138 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. B.J. Greber, J.M. Perez-Bertoldi, K. Lim, A.T. Iavarone, D.B. TosoE, E. Nogales, The cryo-electron microscopy structure of the human CDK-activating kinase. Proc. Natl. Acad. Sci. 37, 22849–22857 (2020)

    Article  CAS  Google Scholar 

  21. M.S. Akhtar, M. Heidemann, J.R. Tietjen, D.W. Zhang, R.D. Chapman, D. Eick, A.Z. Ansari, TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Larochelle, R. Amat, K. Glover-Cutter, M. Sansó, C. Zhang, J.J. Allen, K.M. Shokat, D.L. Bentley, R.P. Fisher, Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19, 1108 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. K. Glover-Cutter, S. Larochelle, B. Erickson, C. Zhang, K. Shokat, R.P. Fisher, D.L. Bentley, TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X. Cao, L. Dang, X. Zheng, Y. Lu, Y. Lu, R. Ji, T. Zhang, X. Ruan, J. Zhi, X. Hou, Targeting super-enhancer-driven oncogenic transcription by CDK7 inhibition in anaplastic thyroid carcinoma. Thyroid 29, 809–823 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Y.-Y. Jiang, D.-C. Lin, A. Mayakonda, M. Hazawa, L.-W. Ding, W.-W. Chien, L. Xu, Y. Chen, W. Senapedis, Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut 66, 1358–1368 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. E. Chipumuro, E. Marco, C.L. Christensen, N. Kwiatkowski, T. Zhang, C.M. Hatheway, B.J. Abraham, B. Sharma, C. Yeung, A. Altabef, CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H.E. Pelish, B.B. Liau, I.I. Nitulescu, A. Tangpeerachaikul, Z.C. Poss, D.H. Da Silva, B.T. Caruso, A. Arefolov, O. Fadeyi, A.L. Christie, Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526, 273–276 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Noda, M. Vallon, C.J. Kuo, The Wnt7’s Tale: a story of an orphan who finds her tie to a famous family. Cancer Sci. 107, 576–582 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Bellmunt, Stem-like signature predicting disease progression in early stage bladder cancer. The role of E2F3 and SOX4. Biomedicines 6, 85 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  30. B.A. Mooso, R.L. Vinall, M. Mudryj, S.A. Yap, RWd. White, P.M. Ghosh, The role of EGFR family inhibitors in muscle invasive bladder cancer: a review of clinical data and molecular evidence. J. Urol. 193, 19–29 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. N. Zhang, X. Zeng, C. Sun, H. Guo, T. Wang, L. Wei, Y. Zhang, J.Z.X. Ma, LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression. Mol. Ther.–Nucleic Acids 18, 871–881 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y.S.L. Ma, New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers 11, 216 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  33. S. Shen, J. Wang, B. Zheng, Y. Tao, M. Li, Y. Wang, X. Ni, T. Suo, H. Liu, H. Liu, LINC01714 enhances gemcitabine sensitivity by modulating FOXO3 phosphorylation in cholangiocarcinoma. Mol. Ther.–Nucleic Acids 19, 446–457 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. Q. He, L. Huang, D. Yan, J. Bi, M. Yang, J.H.T. Lin, CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9. Aging 11, 11314 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. E. Lesovaya, S. Agarwal, B. Readhead, E. Vinokour, G. Baida, P. Bhalla, K. Kirsanov, M. Yakubovskaya, L.C. Platanias, J.T. Dudley, Rapamycin modulates glucocorticoid receptor function, blocks atrophogene REDD1, and protects skin from steroid atrophy. J. Invest. Derm. 138, 1935–1944 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. T.-C. Chou, Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. M. Zarei, H. Du, A.H. Nassar, R.E. Yan, K. Giannikou, S.H. Johnson, H.C. Lam, E.P. Henske, Y. Wang, T. Zhang, Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion. J. Exp. Med. 216, 2635–2652 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J. Earl, D. Rico, E. Carrillo-de-Santa-Pau, B. Rodríguez-Santiago, M. Méndez-Pertuz, H. Auer, G. Gómez, H.B. Grossman, D.G. Pisano, W.A. Schulz, The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies. BMC Genom. 16, 403 (2015)

    Article  CAS  Google Scholar 

  39. F. Du, L. Sun, Y. Chu, T. Li, C. Lei, X. Wang, M. Jiang, Y. Min, Y. Lu, X. Zhao, DDIT4 promotes gastric cancer proliferation and tumorigenesis through the p53 and MAPK pathways. Cancer Commun. 38, 45 (2018)

    Article  Google Scholar 

  40. R.N.J. Bellmunt, Management of metastatic bladder cancer. Cancer Treat. Rev. 76, 10–21 (2019)

    Article  PubMed  CAS  Google Scholar 

  41. P.J. Loehrer Sr, L.H. Einhorn, P.J. Elson, E.D. Crawford, P. Kuebler, I. Tannock, D. Raghavan, R. Stuart-Harris, M.F. Sarosdy, B.A. Lowe, A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J. Clin. Oncol. 10, 1066–1073 (1992)

    Article  CAS  Google Scholar 

  42. M. Yu, T. Ozaki, D. Sun, H. Xing, B. Wei, J. An, J. Yang, Y. Gao, S.L.C. Kong, HIF-1α-dependent miR-424 induction confers cisplatin resistance on bladder cancer cells through down-regulation of pro-apoptotic UNC5B and SIRT4. J. Exp. Clin. Cancer Res. 39, 1–13 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. M.A. Knowles, C.D. Hurst, Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. J. Earl, D. Rico, E. Carrillo-de-Santa-Pau, B. Rodríguez-Santiago, M. Méndez-Pertuz, H. Auer, G. Gómez, H.B. Grossman, D.G. Pisano, W.A. Schulz, The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies. BMC Genom. 16, 1–16 (2015)

    CAS  Google Scholar 

  45. M. Razmara, A.M.B. Skogseid, Reduced menin expression impairs rapamycin effects as evidenced by an increase in mTORC2 signaling and cell migration. Cell. Commun. Signal 16, 64 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. J.J. Oh, S.H. Ji, D.K. Choi, I.H. Gong, T.H. Kim, D.S. Park, A six-week course of bacillus Calmette-Guerin prophylaxis is insufficient to prevent tumor recurrence in nonmuscle invasive bladder cancer with strong-positive expression of p53. Oncology 79, 440–446 (2010)

    Article  PubMed  Google Scholar 

  47. X. Zhou, G. Zhang, Y. Tian, p53 status correlates with the risk of recurrence in non-muscle invasive bladder cancers treated with bacillus Calmette–Guérin: a meta-analysis. PLoS One 10, e0119476 (2015)

  48. E.M. Alexandrova, A.R. Yallowitz, D. Li, S. Xu, R. Schulz, D.A. Proia, G. Lozano, M. Dobbelstein, U.M. Moll, Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523, 352–356 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was funded by the National Key R&D Program of China (2018YFA0902800), the National Natural Science Foundation of China (81772754), the Major Basic Research and Cultivation Program of Natural Science Foundation of Guangdong Province (2017A03038009), the Shenzhen Basic Science Research program (JCYJ20190809164617205), the Sanming Project of Medicine in Shenzhen (SZSM202011011), Shenzhen Key Laboratory Program (ZDSYS20190902092857146), the Hospital Research Fund of SAHSYSU (ZSQYLCKYJJ202019) and a Research Start-up Fund of part-time PI, SAHSYSU (ZSQYJZPI202003).

Author information

Authors and Affiliations

Authors

Contributions

Song Wu and Jun Pang designed the experiments. Yafei Yang, Donggen Jiang and Ziyu Zhou collected the data and analyzed the results. Haiyun Xiong, Xiangwei Yang, Guoyu Peng, Wuchao Xia, Shang Wang, Hanqi Lei, Jing Zhao and Zhirong Qian provided conceptual advice. Yafei Yang, Donggen Jiang and Ziyu Zhou wrote the paper. Song Wu and Jun Pang reviewed and edited the manuscript. Song Wu and Jun Pang obtained funding. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Song Wu or Jun Pang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This study was approved by the ethics committee of the Seventh Affiliated Hospital of Sun Yat-sen University. All animal experiments were performed in accordance with the established guidelines of the Animal Research Ethics Committee of the Seventh Affiliated Hospital of Sun Yat-sen University.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

(a) Docking model of THZ1 in the ATP-binding pocket of CDK7. CDK7 marked with green and THZ1 depicted with iridescence, the binding site Cys312 is in red. (b) MGH-U3, 5637 and human urothelial SV-HUC-1 cells were treated with 100 nM THZ1, cell morphology and (c) colony forming ability were recorded. (d) Apoptosis analysis in MGH-U3 and 5637 cell lines treated with escalating doses for 48 h. (e) mRNA expression of representative transcripts (DDIT4, B4GALT5, EGFR and MED22) across various types of human cancer cells. Data were retrieved from the TCGA and GTEX projects (PNG 3783 kb)

High Resolution Image (TIF 12551 kb)

Supplementary Fig. 2

The correlation between selected candidate oncogene transcript levels and the OS of BC patients from public data sets plotted by the Kaplan-Meier method (PNG 514 kb)

High Resolution Image (TIF 2909 kb)

Supplementary Fig. 3

Sequence verification of CRISPR targeting regions in the indicated genes (PNG 1457 kb)

High Resolution Image (TIF 4999 kb)

Table S1

(XLSX 13 kb)

Table S2

(XLSX 8216 kb)

Table S3

(XLSX 285 kb)

Table S4

(XLSX 9 kb)

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Jiang, D., Zhou, Z. et al. CDK7 blockade suppresses super‐enhancer‐associated oncogenes in bladder cancer. Cell Oncol. 44, 871–887 (2021). https://doi.org/10.1007/s13402-021-00608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00608-x

Keywords

Navigation