Epithelial-stromal communication via CXCL1-CXCR2 interaction stimulates growth of ovarian cancer cells through p38 activation



Paracrine interactions with the stromal environment, including fibroblasts, may be important in the pathogenesis of ovarian cancer. Here, we evaluated the effect of conditioned media derived from ovarian fibroblasts (fibroblast-CMs) and their major cytokines on the growth of ovarian cancer cells, as well as the involvement of mitogen-activated protein kinases (MAPKs) and AKT in mediating this effect.


Ovarian cancer cells were cultured in serum-free media (SF), or conditioned media of fibroblasts derived from normal ovary (CM1) and ovarian tumor tissue (CM2). Cell proliferation was measured by MTT assay. Phosphorylation of MAPKs and AKT was evaluated by Western blotting. Specific inhibitors of MAPKs and AKT were used to evaluate their respective involvement in mediating increased cell growth. Cytokine levels in fibroblast-CMs were measured using Luminex assays. Immunohistochemical staining was conducted for CXCL1, CXCR2 and phosphorylated p38 in primary ovarian tumors.


CM1 and CM2 significantly increased the growth of ovarian cancer cells relative to SF. In OVCAR3 and OVCAR4 cells, p38 phosphorylation was strongly induced by fibroblast-CMs, and pre-treatment with a p38 inhibitor prevented the growth increase induced by fibroblast-CMs. Fibroblasts secreted high levels of IL-6, IL-8, MCP1 and CXCL1. Treatment with only CXCL1 (1 μg/ml) increased cell growth and p38 phosphorylation. Treatment with a CXCR2 inhibitor effectively prevented p38 activation and cell growth induced by fibroblast-CMs. High expression of both CXCL1 and CXCR2 correlated with high expression of phosphorylated p38 in primary ovarian tumors.


From our data, we conclude that CXCL1 is a key factor derived from ovarian fibroblasts that is responsible for increased ovarian cancer cell growth in part through p38 activation. Phosphorylated p38 can be used as a biomarker to predict CXCL1-CXCR2 interaction in vivo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  2. 2.

    L.C. Peres, K.L. Cushing-Haugen, M. Kobel, H.R. Harris, A. Berchuck, M.A. Rossing, J.M. Schildkraut, J.A. Doherty, Invasive epithelial ovarian cancer survival by histotype and disease stage. J. Natl. Cancer Inst. 111(1), 60–68 (2019)

  3. 3.

    R.J. Kurman, M. Shih Ie, The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am. J. Surg. Pathol. 34(3), 433–443 (2010)

    Article  Google Scholar 

  4. 4.

    Y. Kwon, A.K. Godwin, Regulation of HGF and c-MET interaction in normal ovary and ovarian cancer: Importance of targeting c-MET and HGF interaction. Reprod. Sci. 24(4), 494–501 (2016)

  5. 5.

    M. Yousefi, S. Dehghani, R. Nosrati, M. Ghanei, A. Salmaninejad, S. Rajaie, M. Hasanzadeh, A. Pasdar, Current insights into the metastasis of epithelial ovarian cancer-hopes and hurdles. Cell. Oncol. 43(4), 515–538 (2020)

    Article  Google Scholar 

  6. 6.

    R.J. Kurman, M. Shih Ie, Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum. Pathol. 42(7), 918–931 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    I. Cass, C. Holschneider, N. Datta, D. Barbuto, A.E. Walts, B.Y. Karlan, BRCA-mutation-associated fallopian tube carcinoma: a distinct clinical phenotype? Obstet. Gynecol. 106(6), 1327–1334 (2005)

    CAS  Article  Google Scholar 

  8. 8.

    B.K. Erickson, M.G. Conner, C.N. Landen Jr., The role of the fallopian tube in the origin of ovarian cancer. Am. J. Obstet. Gynecol. 209(5), 409–414 (2013)

    Article  Google Scholar 

  9. 9.

    S.H. George, R. Garcia, B.M. Slomovitz, Ovarian cancer: The fallopian tube as the site of origin and opportunities for prevention. Front. Oncol. 6, 108 (2016)

  10. 10.

    S.I. Labidi-Galy, E. Papp, D. Hallberg, N. Niknafs, V. Adleff, M. Noe, R. Bhattacharya, M. Novak, S. Jones, J. Phallen, C.A. Hruban, M.S. Hirsch, D.I. Lin, L. Schwartz, C.L. Maire, J.C. Tille, M. Bowden, A. Ayhan, L.D. Wood, R.B. Scharpf, R. Kurman, T.L. Wang, I.M. Shih, R. Karchin, R. Drapkin, V.E. Velculescu, High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 8(1), 1093 (2017)

    Article  Google Scholar 

  11. 11.

    T.R. Soong, B.E. Howitt, A. Miron, N.S. Horowitz, F. Campbell, C.M. Feltmate, M.G. Muto, R.S. Berkowitz, M.R. Nucci, W. Xian, C.P. Crum, Evidence for lineage continuity between early serous proliferations (ESPs) in the Fallopian tube and disseminated high-grade serous carcinomas. J. Pathol. 246(3), 344–351 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    P. Nilendu, S.C. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G.S. Sarode, J.K. Pal, N.K. Sharma, Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance. Cell. Oncol. 41(4), 353–367 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    A. Salmaninejad, S.F. Valilou, A. Soltani, S. Ahmadi, Y.J. Abarghan, R.J. Rosengren, A. Sahebkar, Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell. Oncol. 42(5), 591–608 (2019)

    Article  Google Scholar 

  14. 14.

    Y. Kwon, B.D. Smith, Y. Zhou, M.D. Kaufman, A.K. Godwin, Effective inhibition of c-MET-mediated signaling, growth and migration of ovarian cancer cells is influenced by the ovarian tissue microenvironment. Oncogene 34(2), 144–153 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    Y. Cheng, X.L. Ma, Y.Q. Wei, X.W. Wei, Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim. Biophys. Acta Rev. Cancer 1871(2), 289–312 (2019)

  16. 16.

    Y. Lu, B. Dong, F. Xu, Y. Xu, J. Pan, J. Song, J. Zhang, Y. Huang, W. Xue, CXCL1-LCN2 paracrine axis promotes progression of prostate cancer via the Src activation and epithelial-mesenchymal transition. Cell. Commun. Signal. 17(1), 118 (2019)

  17. 17.

    A. Zou, D. Lambert, H. Yeh, K. Yasukawa, F. Behbod, F. Fan, N. Cheng, Elevated CXCL1 expression in breast cancer stroma predicts poor prognosis and is inversely associated with expression of TGF-beta signaling proteins. BMC Cancer 14, 781 (2014)

    Article  Google Scholar 

  18. 18.

    K.V. Sawant, R. Xu, R. Cox, H. Hawkins, E. Sbrana, D. Kolli, R.P. Garofalo, K. Rajarathnam, Chemokine CXCL1-mediated neutrophil trafficking in the lung: Role of CXCR2 activation. J. Innate Immun. 7(6), 647–658 (2015)

  19. 19.

    K.V. Sawant, K.M. Poluri, A.K. Dutta, K.M. Sepuru, A. Troshkina, R.P. Garofalo, K. Rajarathnam, Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci. Rep. 6, 33123 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    C. Bolitho, M.A. Hahn, R.C. Baxter, D.J. Marsh, The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocr. Relat. Cancer 17(4), 929–940 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    K.Q. Han, H. Han, X.Q. He, L. Wang, X.D. Guo, X.M. Zhang, J. Chen, Q.G. Zhu, H. Nian, X.F. Zhai, M.W. Jiang, Chemokine CXCL1 may serve as a potential molecular target for hepatocellular carcinoma. Cancer Med. 5(10), 2861–2871 (2016)

  22. 22.

    B. Lu, Y. Zhou, Z. Su, A. Yan, P. Ding, Effect of CCL2 siRNA on proliferation and apoptosis in the U251 human glioma cell line. Mol. Med. Rep. 16(3), 3387–3394 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    X. Cui, Z. Li, J. Gao, P.J. Gao, Y.B. Ni, J.Y. Zhu, Elevated CXCL1 increases hepatocellular carcinoma aggressiveness and is inhibited by miRNA-200a. Oncotarget 7(40), 65052–65066 (2016)

    Article  Google Scholar 

  24. 24.

    W. Zhang, H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12(1), 9–18 (2002)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Sun, W.Z. Liu, T. Liu, X. Feng, N. Yang, H.F. Zhou, Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35(6), 600–604 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    M. Burotto, V.L. Chiou, J.M. Lee, E.C. Kohn, The MAPK pathway across different malignancies: a new perspective. Cancer 120(22), 3446–3456 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    U.A. Germann, B.F. Furey, W. Markland, R.R. Hoover, A.M. Aronov, J.J. Roix, M. Hale, D.M. Boucher, D.A. Sorrell, G. Martinez-Botella, M. Fitzgibbon, P. Shapiro, M.J. Wick, R. Samadani, K. Meshaw, A. Groover, G. DeCrescenzo, M. Namchuk, C.M. Emery, S. Saha, D.J. Welsch, Targeting the MAPK signaling pathway in cancer: Promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (Ulixertinib). Mol. Cancer Ther. 16(11), 2351–2363 (2017)

  28. 28.

    T.C. Hamilton, R.C. Young, W.M. McKoy, K.R. Grotzinger, J.A. Green, E.W. Chu, J. Whang-Peng, A.M. Rogan, W.R. Green, R.F. Ozols, Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res. 43(11), 5379–5389 (1983)

    CAS  PubMed  Google Scholar 

  29. 29.

    J. Crow, S. Atay, S. Banskota, B. Artale, S. Schmitt, A.K. Godwin, Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget 8(7), 11917–11936 (2017)

    Article  Google Scholar 

  30. 30.

    J. Hirst, H.B. Pathak, S. Hyter, Z.Y. Pessetto, T. Ly, S. Graw, D.C. Koestler, A.J. Krieg, K.F. Roby, A.K. Godwin, Licofelone enhances the efficacy of paclitaxel in ovarian cancer by reversing drug resistance and tumor stem-like properties. Cancer Res. 78(15), 4370–4385 (2018)

  31. 31.

    S. Domcke, R. Sinha, D.A. Levine, C. Sander, N. Schultz, Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, Article number: 2126 (2013)

    Article  Google Scholar 

  32. 32.

    B. Stordal, K. Timms, A. Farrelly, D. Gallagher, S. Busschots, M. Renaud, J. Thery, D. Williams, J. Potter, T. Tran, G. Korpanty, M. Cremona, M. Carey, J. Li, Y. Li, O. Aslan, J.J. O'Leary, G.B. Mills, B.T. Hennessy, BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. Mol. Oncol. 7(3), 567–579 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    A. Rot, U.H. von Andrian, Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004)

    CAS  Article  Google Scholar 

  34. 34.

    Z. Cao, B. Fu, B. Deng, Y. Zeng, X. Wan, L. Qu, Overexpression of Chemokine (C-X-C) ligand 1 (CXCL1) associated with tumor progression and poor prognosis in hepatocellular carcinoma. Cancer Cell Int. 14(1), 86 (2014)

    Article  Google Scholar 

  35. 35.

    P.L. Kuo, K.H. Shen, S.H. Hung, Y.L. Hsu, CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis 33(12), 2477–2487 (2012)

    CAS  Article  Google Scholar 

  36. 36.

    N. Wang, W. Liu, Y. Zheng, S. Wang, B. Yang, M. Li, J. Song, F. Zhang, X. Zhang, Q. Wang, Z. Wang, CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-kappaB/SOX4 signaling. Cell Death Dis. 9(9), 880 (2018)

    Article  Google Scholar 

  37. 37.

    K.I. Amiri, A. Richmond, Fine tuning the transcriptional regulation of the CXCL1 chemokine. Prog. Nucleic Acid Res. Mol. Biol. 74, 1–36 (2003)

    CAS  Article  Google Scholar 

  38. 38.

    P. Jiang, X. Li, C.B. Thompson, Z. Huang, F. Araiza, R. Osgood, G. Wei, M. Feldmann, G.I. Frost, H.M. Shepard, Effective targeting of the tumor microenvironment for cancer therapy. Anticancer Res. 32(4), 1203–1212 (2012)

    CAS  PubMed  Google Scholar 

  39. 39.

    J. Kzhyshkowska, M. Bizzarri, R. Apte, N. Cherdyntseva, Editorial: Targeting of cancer cells and tumor microenvironment: Perspectives for personalized therapy. Curr. Pharm. Des. 23(32), 4703–4704 (2017)

  40. 40.

    S.R. Singh, P. Rameshwar, P. Siegel, Targeting tumor microenvironment in cancer therapy. Cancer Lett. 380(1), 203–204 (2016)

    CAS  Article  Google Scholar 

  41. 41.

    S.J. Burke, D. Lu, T.E. Sparer, T. Masi, M.R. Goff, M.D. Karlstad, J.J. Collier, NF-kappaB and STAT1 control CXCL1 and CXCL2 gene transcription. Am. J. Physiol. Endocrinol. Metab. 306(2), E131–E149 (2014)

    CAS  Article  Google Scholar 

  42. 42.

    G. Yang, D.G. Rosen, G. Liu, F. Yang, X. Guo, X. Xiao, F. Xue, I. Mercado-Uribe, J. Huang, S.H. Lin, G.B. Mills, J. Liu, CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin. Cancer Res. 16(15), 3875–3886 (2010)

    CAS  Article  Google Scholar 

  43. 43.

    D. Wang, H. Sun, J. Wei, B. Cen, R.N. DuBois, CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77(13), 3655–3665 (2017)

Download references


This study was supported in part by a grant from the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (2014R1A1A3050916) to YK, the NIGMS (P20 GM130423) and the KU Cancer Center’s Cancer Center Support Grant (P30 CA168524) to AKG. AKG is the Chancellors Distinguished Chair in Biomedical Sciences Endowed Professor.

Author information



Corresponding author

Correspondence to Youngjoo Kwon.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

Levels of cytokines secreted by ovarian fibroblasts, ovarian cancer cells, and their co-cultures. Fibroblasts were seeded in the lower wells and cancer cells in the upper wells of a 24-well Transwell culture system. Values represent means of duplicate experiments when only ovarian cancer cell lines were used (no fibroblasts); all others are values from single experiments. (DOCX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, GY., Pathak, H.B., Godwin, A.K. et al. Epithelial-stromal communication via CXCL1-CXCR2 interaction stimulates growth of ovarian cancer cells through p38 activation. Cell Oncol. 44, 77–92 (2021). https://doi.org/10.1007/s13402-020-00554-0

Download citation


  • Ovarian cancer
  • Tumor microenvironment
  • CXCL1
  • CXCR2
  • Cell proliferation
  • Ovarian fibroblast
  • p38 activation