Skip to main content

Advertisement

Log in

EBV-miR-BART10-3p and EBV-miR-BART22 promote metastasis of EBV-associated gastric carcinoma by activating the canonical Wnt signaling pathway

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) constitutes the largest subpopulation in EBV-associated tumors worldwide. To date, 44 mature EBV-encoded microRNAs (EBV miRNAs) have been identified, but their roles in EBVaGC development are still poorly understood. In this study, we aimed to investigate the roles and targets of ebv-miR-BART10-3p (BART10-3p) and ebv-miR-BART22 (BART22) in EBVaGC.

Methods

EBV miRNA expression in EBVaGCs was evaluated by deep sequencing and qRT-PCR, and relationships between BART10-3p or BART22 expression and clinicolpathological characteristics and survival rates of patients with EBVaGC were analyzed. The roles of BART10-3p and BART22 and their underlying mechanisms were further investigated through exogenous overexpression or silencing in EBVaGC cells, and validated in clinical EBVaGC tissue samples.

Results

BART10-3p and BART22 were found to be highly expressed in the EBVaGC cell lines SNU719 and YCCEL1. Higher expression of BART10-3p or BART22 in primary EBVaGC samples was significantly associated with lymph node metastasis and a worse 5-year overall survival. BART10-3p and BART22 promoted cell migration and invasion by targeting adenomatous polyposis coli (APC) and Dickkopf 1 (DKK1), thereby activating the Wnt signaling pathway and, consequently, upregulating downstream Twist and downregulating downstream E-cadherin. In 874 primary gastric carcinoma samples, APC and DKK1 were found to be lower expressed in EBVaGC than in EBV-negative samples, and their expression levels were inversely correlated with those of BART10-3p and BART22 in 71 EBVaGC samples.

Conclusions

From our data we conclude that BART10-3p and BART22 play vital roles in promoting EBVaGC metastasis by targeting APC and DKK1 and, subsequently, activating the Wnt signaling pathway, thereby providing novel prognostic biomarkers and potential therapeutic targets for EBVaGC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.J. Delecluse, R. Feederle, B. O’Sullivan, P. Taniere, Epstein Barr virus-associated tumours: an update for the attention of the working pathologist. J. Clin. Pathol. 60, 1358–1364 (2007). https://doi.org/10.1136/jcp.2006.044586

  2. S.C. Huang, K.F. Ng, K.H. Chen, J.T. Hsu, K.H. Liu, T.S. Yeh, T.C. Chen, Prognostic factors in Epstein-Barr virus-associated stage I-III gastric carcinoma: implications for a unique type of carcinogenesis. Oncol. Rep. 32, 530–538 (2014). https://doi.org/10.3892/or.2014.3234

  3. M. Naseem, A. Barzi, C. Brezden-Masley, A. Puccini, M.D. Berger, R. Tokunaga, F. Battaglin, S. Soni, M. McSkane, W. Zhang, H.J. Lenz, Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat. Rev. 66, 15–22 (2018). https://doi.org/10.1016/j.ctrv.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. K. Takada, Epstein-Barr virus and gastric carcinoma. Mol. Pathol. 53, 255–261 (2000)

    Article  CAS  Google Scholar 

  5. T.C. Cheng, S.S. Hsieh, W.L. Hsu, Y.F. Chen, H.H. Ho, L.F. Sheu, Expression of Epstein-Barr nuclear antigen 1 in gastric carcinoma cells is associated with enhanced tumorigenicity and reduced cisplatin sensitivity. Int. J. Oncol. 36, 151–160 (2010)

    CAS  PubMed  Google Scholar 

  6. R. Hino, H. Uozaki, N. Murakami, T. Ushiku, A. Shinozaki, S. Ishikawa, T. Morikawa, T. Nakaya, T. Sakatani, K. Takada, M. Fukayama, Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res. 69, 2766–2774 (2009). https://doi.org/10.1158/0008-5472.CAN-08-3070

  7. D. Iwakiri, Y. Eizuru, M. Tokunaga, K. Takada, Autocrine growth of Epstein-Barr virus-positive gastric carcinoma cells mediated by an Epstein-Barr virus-encoded small RNA. Cancer Res. 63, 7062–7067 (2003)

  8. Q. Wang, S.W. Tsao, T. Ooka, J.M. Nicholls, H.W. Cheung, S. Fu, Y.C. Wong, X. Wang, Anti-apoptotic role of BARF1 in gastric cancer cells. Cancer Lett. 238, 90–103 (2006). https://doi.org/10.1016/j.canlet.2005.06.023

  9. S.J. Chen, G.H. Chen, Y.H. Chen, C.Y. Liu, K.P. Chang, Y.S. Chang, H.C. Chen, Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS One 5, e12745 (2010). https://doi.org/10.1371/journal.pone.0012745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A.R. Marquitz, A. Mathur, P.E. Chugh, D.P. Dittmer, N. Raab-Traub, Expression profile of microRNAs in Epstein-Barr virus-infected AGS gastric carcinoma cells. J. Virol. 88, 1389–1393 (2014). https://doi.org/10.1128/JVI.02662-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A.L. Treece, D.L. Duncan, W. Tang, S. Elmore, D.R. Morgan, R.L. Dominguez, O. Speck, M.O. Meyers, M.L. Gulley, Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns. Lab. Invest. 96, 661–671 (2016). https://doi.org/10.1038/labinvest.2016.33

  12. J. Imig, N. Motsch, J.Y. Zhu, S. Barth, M. Okoniewski, T. Reineke, M. Tinguely, A. Faggioni, P. Trivedi, G. Meister, C. Renner, F.A. Grasser, microRNA profiling in Epstein-Barr virus-associated B-cell lymphoma. Nucleic Acids Res. 39, 1880–1893 (2011). https://doi.org/10.1093/nar/gkq1043

    Article  CAS  PubMed  Google Scholar 

  13. N. Motsch, J. Alles, J. Imig, J. Zhu, S. Barth, T. Reineke, M. Tinguely, S. Cogliatti, A. Dueck, G. Meister, C. Renner, F.A. Grässer, MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One 7, e42193 (2012). https://doi.org/10.1371/journal.pone.0042193

  14. C.Y. Hsu, Y.H. Yi, K.P. Chang, Y.S. Chang, S.J. Chen, H.C. Chen, The Epstein-Barr Virus-encoded microRNA MiR-BART9 promotes tumor metastasis by targeting E-cadherin in nasopharyngeal carcinoma. PLoS Pathog. 10, e1003974 (2014). https://doi.org/10.1371/journal.ppat.1003974

  15. C.Y. Tsai, Y.Y. Liu, K.H. Liu, J.T. Hsu, T.C. Chen, C.T. Chiu, T.S. Yeh, Comprehensive profiling of virus microRNAs of Epstein-Barr virus-associated gastric carcinoma: highlighting the interactions of ebv-Bart9 and host tumor cells. J. Gastroenterol. Hepatol. 32, 82–91 (2017). https://doi.org/10.1111/jgh.13432

    Article  CAS  PubMed  Google Scholar 

  16. L.M. Cai, X.M. Lyu, W.R. Luo, X.F. Cui, Y.F. Ye, C.C. Yuan, Q.X. Peng, D.H. Wu, T.F. Liu, E. Wang, F.M. Marincola, K.T. Yao, W.Y. Fang, H.B. Cai, X. Li, EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene 34, 2156–2166 (2015). https://doi.org/10.1038/onc.2014.341

  17. L. Cai, Y. Ye, Q. Jiang, Y. Chen, X. Lyu, J. Li, S. Wang, T. Liu, H. Cai, K. Yao, J.L. Li, X. Li, Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat. Commun. 6, 7353 (2015). https://doi.org/10.1038/ncomms8353

    Article  PubMed  PubMed Central  Google Scholar 

  18. J. Zhao, Q. Liang, K.F. Cheung, W. Kang, R.W. Lung, J.H. Tong, K.F. To, J.J. Sung, J. Yu, Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer 119, 304–312 (2013). https://doi.org/10.1002/cncr.27724

    Article  CAS  PubMed  Google Scholar 

  19. B.T. MacDonald, K. Tamai, X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009). https://doi.org/10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T. Zhan, N. Rindtorff, M. Boutros, Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017). https://doi.org/10.1038/onc.2016.304

    Article  CAS  PubMed  Google Scholar 

  21. C.M. Cruciat, C. Niehrs, Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. 5, a015081 (2013). https://doi.org/10.1101/cshperspect.a015081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Niida, T. Hiroko, M. Kasai, Y. Furukawa, Y. Nakamura, Y. Suzuki, S. Sugano, T. Akiyama, DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23, 8520–8526 (2004). https://doi.org/10.1038/sj.onc.1207892

    Article  CAS  PubMed  Google Scholar 

  23. M.V. Semenov, K. Tamai, B.K. Brott, M. Kuhl, S. Sokol, X. He, Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11, 951–961 (2001)

    Article  CAS  Google Scholar 

  24. A.M.G. Wong, K.L. Kong, J.W.H. Tsang, D.L.W. Kwong, X.-Y. Guan, Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer 118, 698–710 (2012). https://doi.org/10.1002/cncr.26309

    Article  CAS  PubMed  Google Scholar 

  25. Q. Yan, Z. Zeng, Z. Gong, W. Zhang, X. Li, B. He, Y. Song, Q. Li, Y. Zeng, Q. Liao, P. Chen, L. Shi, S. Fan, B. Xiang, J. Ma, M. Zhou, X. Li, J. Yang, W. Xiong, G. Li, EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC. Oncotarget 6, 41766–41782 (2015). https://doi.org/10.18632/oncotarget.6155

    Article  PubMed  PubMed Central  Google Scholar 

  26. K. Min, S.K. Lee, EBV miR-BART10-3p promotes cell proliferation and migration by targeting DKK1. Int. J. Biol. Sci. 15, 657–667 (2019). https://doi.org/10.7150/ijbs.30099

  27. B.D. Edge, S.B. Compton, C.C. Fritz, A.G. Greene, F.L. Trotti (eds.), AJCC Cancer Staging Handbook, 7th edn. (Springer-Verlag, New York, 2010)

    Google Scholar 

  28. J.N. Chen, Y.G. Ding, Z.Y. Feng, H.G. Li, D. He, H. Du, B. Wu, C.K. Shao, Association of distinctive Epstein-Barr virus variants with gastric carcinoma in Guangzhou, southern China. J. Med. Virol. 82, 658–667 (2010). https://doi.org/10.1002/jmv.21731

    Article  CAS  PubMed  Google Scholar 

  29. M. Dong, H.Y. Wang, X.X. Zhao, J.N. Chen, Y.W. Zhang, Y. Huang, L. Xue, H.G. Li, H. Du, X.Y. Wu, C.K. Shao, Expression and prognostic roles of PIK3CA, JAK2, PD-L1, and PD-L2 in Epstein-Barr virus-associated gastric carcinoma. Hum. Pathol. 53, 25–34 (2016). https://doi.org/10.1016/j.humpath.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  30. L. Sun, F. Chen, W. Shi, L. Qi, Z. Zhao, J. Zhang, Prognostic impact of TAZ and beta-catenin expression in adenocarcinoma of the esophagogastric junction. Diagn. Pathol. 9, 125 (2014). https://doi.org/10.1186/1746-1596-9-125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D.K. Woo, H.S. Kim, H.S. Lee, Y.H. Kang, H.K. Yang, W.H. Kim, Altered expression and mutation of beta-catenin gene in gastric carcinomas and cell lines. Int. J. Cancer 95, 108–113 (2001)

    Article  CAS  Google Scholar 

  32. A. Shinozaki-Ushiku, A. Kunita, M. Isogai, T. Hibiya, T. Ushiku, K. Takada, M. Fukayama, Profiling of virus-encoded microRNAs in Epstein-Barr Virus-associated gastric carcinoma and their roles in gastric carcinogenesis. J. Virol. 89, 5581–5591 (2015). https://doi.org/10.1128/JVI.03639-14

  33. B.W. Kang, Y. Choi, O.K. Kwon, S.S. Lee, H.Y. Chung, W. Yu, H.I. Bae, A.N. Seo, H. Kang, S.K. Lee, S.W. Jeon, K. Hur, J.G. Kim, High level of viral microRNA-BART20-5p expression is associated with worse survival of patients with Epstein-Barr virus-associated gastric cancer. Oncotarget 8, 14988–14994 (2017). https://doi.org/10.18632/oncotarget.14744

  34. W.T. Huang, C.W. Lin, EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-gamma-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am. J. Pathol. 184, 1185–1197 (2014). https://doi.org/10.1016/j.ajpath.2013.12.024

    Article  CAS  PubMed  Google Scholar 

  35. J.Y.W. Chan, S.T.S. Wong, W.I. Wei, The role of Epstein-Barr virus-encoded microRNA BART7 status of resection margins in the prediction of local recurrence after salvage nasopharyngectomy for recurrent nasopharyngeal carcinoma. Cancer 121, 2358–2366 (2015). https://doi.org/10.1002/cncr.29380

  36. L. Cai, J. Li, X. Zhang, Y. Lu, J. Wang, X. Lyu, Y. Chen, J. Liu, H. Cai, Y. Wang, X. Li, Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma. Oncotarget 6, 7838–7850 (2015). https://doi.org/10.18632/oncotarget.3046

    Article  PubMed  PubMed Central  Google Scholar 

  37. B. Kim, S.J. Byun, Y.A. Kim, J.E. Kim, B.L. Lee, W.H. Kim, M.S. Chang, Cell cycle regulators, APC/beta-catenin, NF-kappaB and Epstein-Barr virus in gastric carcinomas. Pathology 42, 58–65 (2010). https://doi.org/10.3109/00313020903356392

    Article  CAS  PubMed  Google Scholar 

  38. M. Tomita, M.Z. Dewan, N. Yamamoto, A. Kikuchi, N. Mori, Epstein-Barr virus-encoded latent membrane protein 1 activates beta-catenin signaling in B lymphocytes. Cancer Sci. 100, 807–812 (2009). https://doi.org/10.1111/j.1349-7006.2009.01121.x

    Article  CAS  PubMed  Google Scholar 

  39. J.A. Morrison, A.J. Klingelhutz, N. Raab-Traub, Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J. Virol. 77, 12276–12284 (2003)

    Article  CAS  Google Scholar 

  40. K. Watanabe, J. Biesinger, M.L. Salmans, B.S. Roberts, W.T. Arthur, M. Cleary, B. Andersen, X. Xie, X. Dai, Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer. PLoS One 9, e92317 (2014). https://doi.org/10.1371/journal.pone.0092317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Y. Nakamura, E. de Paiva Alves, G.J. Veenstra, S. Hoppler, Tissue- and stage-specific Wnt target gene expression is controlled subsequent to beta-catenin recruitment to cis-regulatory modules. Development 143, 1914–1925 (2016). https://doi.org/10.1242/dev.131664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. E.A. Klein, R.K. Assoian, Transcriptional regulation of the cyclin D1 gene at a glance. J. Cell Sci. 121, 3853–3857 (2008). https://doi.org/10.1242/jcs.039131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Conacci-Sorrell, L. McFerrin, R.N. Eisenman, An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med. 4, a014357 (2014). https://doi.org/10.1101/cshperspect.a014357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. L. Xu, Y. Hou, G. Tu, Y. Chen, Y.E. Du, H. Zhang, S. Wen, X. Tang, J. Yin, L. Lang, K. Sun, G. Yang, X. Tang, M. Liu, Nuclear Drosha enhances cell invasion via an EGFR-ERK1/2-MMP7 signaling pathway induced by dysregulated miRNA-622/197 and their targets LAMC2 and CD82 in gastric cancer. Cell Death Dis. 8, e2642 (2017). https://doi.org/10.1038/cddis.2017.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. C.L. Xu, J.Z. Wang, X.P. Xia, C.W. Pan, X.X. Shao, S.L. Xia, S.X. Yang, B. Zheng, Rab11-FIP2 promotes colorectal cancer migration and invasion by regulating PI3K/AKT/MMP7 signaling pathway. Biochem. Biophys. Res. Commun. 470, 397–404 (2016). https://doi.org/10.1016/j.bbrc.2016.01.031

    Article  CAS  PubMed  Google Scholar 

  46. A. Krek, D. Grun, M.N. Poy, R. Wolf, L. Rosenberg, E.J. Epstein, P. MacMenamin, I. da Piedade, K.C. Gunsalus, M. Stoffel, N. Rajewsky, Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005). https://doi.org/10.1038/ng1536

  47. Z. Lin, X. Wan, R. Jiang, L. Deng, Y. Gao, J. Tang, Y. Yang, W. Zhao, X. Yan, K. Yao, B. Sun, Y. Chen, Epstein-Barr virus-encoded latent membrane protein 2A promotes the epithelial-mesenchymal transition in nasopharyngeal carcinoma via metastatic tumor antigen 1 and mechanistic target of rapamycin signaling induction. J. Virol. 88, 11872–11885 (2014). https://doi.org/10.1128/JVI.01867-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. N. Gaur, J. Gandhi, E.S. Robertson, S.C. Verma, R. Kaul, Epstein-Barr virus latent antigens EBNA3C and EBNA1 modulate epithelial to mesenchymal transition of cancer cells associated with tumor metastasis. Tumour Biol. 36, 3051–3060 (2015). https://doi.org/10.1007/s13277-014-2941-6

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81572309 to CKS, and No. 81502271 to MD), the Natural Science Foundation of Guangdong Province (No. 2017A030313502 to CKS), and Guangzhou Municipal Science and Technology Project (No. 201707010119 to CKS). We thank Prof. Qian Tao from the Chinese University of Hong Kong for supplying the YCCEL1 cell line as gift. We also thank Prof. Ling Xue from the First Affiliated Hospital, Sun Yat-sen University, Prof. Hai-gang Li from Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Prof. Yan Huang from the Sixth Affiliated Hospital, Sun Yat-sen University, and Prof. Hong Du from Guangzhou First People’s Hospital, Guangzhou Medical University for providing gastric carcinoma tissue samples.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, M., Gong, Lp., Chen, Jn. et al. EBV-miR-BART10-3p and EBV-miR-BART22 promote metastasis of EBV-associated gastric carcinoma by activating the canonical Wnt signaling pathway. Cell Oncol. 43, 901–913 (2020). https://doi.org/10.1007/s13402-020-00538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00538-0

Keywords

Navigation