Skip to main content

Advertisement

Log in

A lectin-based glycomic approach identifies FUT8 as a driver of radioresistance in oesophageal squamous cell carcinoma

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Radio-resistance is recognized as a main factor in the failure of radiotherapy in oesophageal squamous cell carcinoma (ESCC). Aberrant cell surface glycosylation has been reported to correlate with radio-resistance in different kinds of tumours. However, glycomic alterations and the corresponding enzymes associated with ESCC radio-resistance have not yet been defined.

Methods

Two radioresistant cell lines, EC109R and TE-1R, were established from parental ESCC cell lines EC109 and TE-1 by fractionated irradiation. A lectin microarray was used to screen for altered glycan patterns. RNA-sequencing (RNA-seq) was employed to identify differentially expressed glycosyltransferases. Cell Counting Kit-8, colony formation and flow cytometry assays were used to measure cell viability and radiosensitivity. Expression of glycosyltransferase in ESCC tissues was assessed by immunohistochemistry. In vivo radiosensitivity was analysed using a nude mouse xenograft model. Downstream effectors of the enzyme were verified using a lectin-based pull-down assay combined with mass spectrometry.

Results

We found that EC109R and TE-1R cells were more resistant to irradiation than the parental EC109 and TE-1 cells. Using lectin microarrays combined with RNA sequencing, we found that α1, 6-fucosyltransferase (FUT8) was overexpressed in the radioresistant ESCC cell lines. Both gain- and loss-of-function studies confirmed that FUT8 regulates the sensitivity of ESCC cells to irradiation. Importantly, we found that high FUT8 expression was positively linked to radio-resistance and a poor prognosis in ESCC patients who received radiation therapy. Moreover, FUT8 inhibition suppressed the growth and formation of xenograft tumours in nude mice after irradiation. Using a lectin-based pull-down assay and mass spectrometry, we found that CD147 could be glycosylated by FUT8. As expected, inhibition of CD147 partly reversed FUT8-induced radio-resistance in ESCC cells.

Conclusions

Our results indicate that FUT8 functions as a driver of radio-resistance in ESCC by targeting CD147. Therefore, FUT8 may serve as a marker for predicting the response to radiation therapy in patients with ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018)

    PubMed  Google Scholar 

  2. A. Fatehi Hassanabad, R. Chehade, D. Breadner, J. Raphael. Esophageal carcinoma: Towards targeted therapies. Cell. Oncol. 43, 195–209 (2020)

    Google Scholar 

  3. X. Sun, R.G.C. Martin, Q. Zheng, R. Farmer, H. Pandit, X. Li, K. Jacob, J. Suo, Y. Li, Drug-induced expression of EpCAM contributes to therapy resistance in esophageal adenocarcinoma. Cell. Oncol. 41, 651–662 (2018)

  4. H. Zeng, R. Zheng, S. Zhang, T. Zuo, C. Xia, X. Zou, W. Chen, Esophageal cancer statistics in China, 2011: Estimates based on 177 cancer registries. Thorac. Cancer 7, 232–237 (2016)

    PubMed  Google Scholar 

  5. W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132 (2016)

    PubMed  Google Scholar 

  6. M. Park, H.J. Yoon, M.C. Kang, J. Kwon, H.W. Lee, MiR-338-5p enhances the radiosensitivity of esophageal squamous cell carcinoma by inducing apoptosis through targeting survivin. Sci. Rep. 7, 10932 (2017)

    PubMed  PubMed Central  Google Scholar 

  7. H. Su, F. Lin, X. Deng, L. Shen, Y. Fang, Z. Fei, L. Zhao, X. Zhang, H. Pan, D. Xie, X. Jin, C. Xie, Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J. Transl. Med. 14, 225 (2016)

    PubMed  PubMed Central  Google Scholar 

  8. C. Li, L.X. Wang, Chemoenzymatic methods for the synthesis of glycoproteins. Chem. Rev. 118, 8359–8413 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. B.N. Vajaria, P.S. Patel, Glycosylation: a hallmark of cancer? Glycoconj. J. 34, 147–156 (2017)

    CAS  PubMed  Google Scholar 

  10. S.R. Stowell, T. Ju, R.D. Cummings, Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. C. Jaillet, W. Morelle, M.C. Slomianny, V. Paget, G. Tarlet, V. Buard, S. Selbonne, F. Caffin, E. Rannou, P. Martinez, A. Francois, F. Foulquier, F. Allain, F. Milliat, O. Guipaud, Radiation-induced changes in the glycome of endothelial cells with functional consequences. Sci. Rep. 7, 5290 (2017)

    PubMed  PubMed Central  Google Scholar 

  12. E. Toth, K. Vekey, O. Ozohanics, A. Jeko, I. Dominczyk, P. Widlak, L. Drahos, Changes of protein glycosylation in the course of radiotherapy. J. Pharm. Biomed. Anal. 118, 380–386 (2016)

    CAS  PubMed  Google Scholar 

  13. C. Huang, M. Huang, W. Chen, W. Zhu, H. Meng, L. Guo, T. Wei, J. Zhang, N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition. FEBS J. 282, 4295–4306 (2015)

    CAS  PubMed  Google Scholar 

  14. X. Dong, Z. Luo, Y. Wang, L. Meng, Q. Duan, L. Qiu, F. Peng, L. Shen, Altered O-glycosylation is associated with inherent radioresistance and malignancy of human laryngeal carcinoma. Exp. Cell Res. 362, 302–310 (2018)

    CAS  PubMed  Google Scholar 

  15. M. Baro, C. Lopez Sambrooks, A. Quijano, W.M. Saltzman, J. Contessa, Oligosaccharyltransferase inhibition reduces receptor tyrosine kinase activation and enhances glioma radiosensitivity. Clin. Cancer Res. 25, 784–795 (2019)

    CAS  PubMed  Google Scholar 

  16. S. Mohanty, A. Tsiouris, Z. Hammoud, Glycomic expression in esophageal disease. Metabolites 2, 1004–1011 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. A.M. Byrne, R. Sharma, G. Duggan, D. Kelleher, A. Long, Deoxycholic acid impairs glycosylation and fucosylation processes in esophageal epithelial cells. Glycobiology 22, 638–648 (2012)

    CAS  PubMed  Google Scholar 

  18. C. Zhang, X. Deng, L. Qiu, F. Peng, S. Geng, L. Shen, Z. Luo, Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying β1-integrin glycosylation. J. Cancer 9, 2666–2677 (2018)

    PubMed  PubMed Central  Google Scholar 

  19. S. Fry, B. Afrough, A. Leathem, M. Dwek, Lectin array-based strategies for identifying metastasis-associated changes in glycosylation. Methods Mol. Biol. 878, 267–272 (2012)

    CAS  PubMed  Google Scholar 

  20. Y. Zhou, L. Chu, Q. Wang, W. Dai, X. Zhang, J. Chen, L. Li, P. Ding, L. Zhang, H. Gu, X. Lv, W. Zhang, D. Zhou, P. Zhang, G. Cai, K. Zhao, W. Hu, CD59 is a potential biomarker of esophageal squamous cell carcinoma radioresistance by affecting DNA repair. Cell Death Dis. 9, 887 (2018)

    PubMed  PubMed Central  Google Scholar 

  21. S. Wu, Z. Lv, Y. Wang, L. Sun, Z. Jiang, C. Xu, J. Zhao, X. Sun, X. Li, L. Hu, A. Tang, Y. Gui, F. Zhou, Z. Cai, R. Wang, Increased expression of pregnancy up-regulated non-ubiquitous calmodulin kinase is associated with poor prognosis in clear cell renal cell carcinoma. PLoS One 8, e59936 (2013)

  22. L. Xie, X. Song, J. Yu, L. Wei, B. Song, X. Wang, L. Lv, Fractionated irradiation induced radio-resistant esophageal cancer EC109 cells seem to be more sensitive to chemotherapeutic drugs. J. Exp. Clin. Cancer Res. 28, 68 (2009)

    PubMed  PubMed Central  Google Scholar 

  23. S.M. Zhou, L. Cheng, S.J. Guo, Y. Wang, D.M. Czajkowsky, H. Gao, X.F. Hu, S.C. Tao, Lectin RCA-I specifically binds to metastasis-associated cell surface glycans in triple-negative breast cancer. Breast Cancer Res. 17, 36 (2015)

    PubMed  PubMed Central  Google Scholar 

  24. L. Yang, Z. Yang, L. Cheng, J. Cheng, Y. Sun, W. Li, K. Song, W. Huang, Y. Yin, S. Tao, Q. Zhang, Lectin microarray combined with mass spectrometry identifies haptoglobin-related protein (HPR) as a potential serologic biomarker for separating nonbacterial pneumonia from bacterial pneumonia in childhood. Proteomics Clin. Appl. 12, e1800030 (2018)

    PubMed  Google Scholar 

  25. X.L. Yang, H.Y. Li, Y.Z. Yue, W.J. Ding, C. Xu, T.T. Shi, G.W. Chen, L.G. Wang, Transcriptomic analysis of the candidate genes related to aroma formation in osmanthus fragrans. Molecules 23, 1604 (2018)

  26. B. He, Z. Hu, L. Ma, H. Li, M. Ai, J. Han, B. Zeng, Transcriptome analysis of different growth stages of Aspergillus oryzae reveals dynamic changes of distinct classes of genes during growth. BMC Microbiol. 18, 12 (2018)

    PubMed  PubMed Central  Google Scholar 

  27. L. Shen, Q. Ke, J. Chai, C. Zhang, L. Qiu, F. Peng, X. Deng, Z. Luo, PAG1 promotes the inherent radioresistance of laryngeal cancer cells via activation of STAT3. Exp. Cell Res. 370, 127–136 (2018)

    CAS  PubMed  Google Scholar 

  28. W. Lin, J. Xie, N. Xu, L. Huang, A. Xu, H. Li, C. Li, Y. Gao, M. Watanabe, C. Liu, P. Huang, Glaucocalyxin A induces G2/M cell cycle arrest and apoptosis through the PI3K/Akt pathway in human bladder cancer cells. Int. J. Biol. Sci. 14, 418–426 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. X. Dong, Z. Luo, T. Liu, J. Chai, Q. Ke, L. Shen, Identification of integrin β1 as a novel PAG1-interacting protein involved in the inherent radioresistance of human laryngeal carcinoma. J. Cancer 9, 4128–4138 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. P. Agrawal, B. Fontanals-Cirera, E. Sokolova, S. Jacob, C.A. Vaiana, D. Argibay, V. Davalos, M. McDermott, S. Nayak, F. Darvishian, M. Castillo, B. Ueberheide, I. Osman, D. Fenyo, L.K. Mahal, E. Hernando, A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell 31, 804–819:e807 (2017)

  31. S. Ishihara, M. Yasuda, A. Ishizu, M. Ishikawa, H. Shirato, H. Haga, Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget 6, 4602–4614 (2015)

    PubMed  PubMed Central  Google Scholar 

  32. M. Aco-Tlachi, R. Carreno-Lopez, P.L. Martinez-Morales, P. Maycotte, A. Aguilar-Lemarroy, L.F. Jave-Suarez, G. Santos-Lopez, J. Reyes-Leyva, V. Vallejo-Ruiz, Glycogene expression profiles based on microarray data from cervical carcinoma HeLa cells with partially silenced E6 and E7 HPV oncogenes. Infect. Agent. Cancer 13, 25 (2018)

    PubMed  PubMed Central  Google Scholar 

  33. S. Yanagidani, N. Uozumi, Y. Ihara, E. Miyoshi, N. Yamaguchi, N. Taniguchi, Purification and cDNA cloning of GDP-L-Fuc:N-acetyl-β-D-glucosaminide:α1–6 fucosyltransferase (α1–6 FucT) from human gastric cancer MKN45 cells. J. Biochem. 121, 626–632 (1997)

    CAS  PubMed  Google Scholar 

  34. X. Ju, S. Liang, J. Zhu, G. Ke, H. Wen, X. Wu, Extracellular matrix metalloproteinase inducer (CD147/BSG/EMMPRIN)-induced radioresistance in cervical cancer by regulating the percentage of the cells in the G2/m phase of the cell cycle and the repair of DNA Double-strand Breaks (DSBs). Am. J. Transl. Res. 8, 2498–2511 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. B.G. Ng, G. Xu, N. Chandy, J. Steyermark, D.N. Shinde, K. Radtke, K. Raymond, C.B. Lebrilla, A. AlAsmari, S.F. Suchy, Z. Powis, E.A. Faqeih, S.A. Berry, D.F. Kronn, H.H. Freeze, Biallelic mutations in FUT8 cause a congenital disorder of glycosylation with defective fucosylation. Am. J. Hum. Genet. 102, 188–195 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. P. Dana, S. Saisomboon, R. Kariya, S. Okada, S. Obchoei, K. Sawanyawisuth, C. Wongkham, C. Pairojkul, S. Wongkham, K. Vaeteewoottacharn, CD147 augmented monocarboxylate transporter-1/4 expression through modulation of the Akt-FoxO3-NF-kappaB pathway promotes cholangiocarcinoma migration and invasion. Cell. Oncol. 43, 211–222 (2020)

    CAS  Google Scholar 

  37. F. Peng, H. Li, Q. You, D. Wu, C. Jiang, G. Deng, Y. Li, Y. Wu, CD147 as a novel prognostic biomarker for hepatocellular carcinoma: a meta-analysis. Biomed. Res. Int. 2017, 5019367 (2017)

    PubMed  PubMed Central  Google Scholar 

  38. H. Li, Z. Xi, X. Dai, W. Wu, Y. Li, Y. Liu, H. Zhang, CD147 and glioma: a meta-analysis. J. Neurooncol. 134, 145–156 (2017)

    CAS  PubMed  Google Scholar 

  39. H. Li, D. Wu, S. Shi, Y. Xu, L. Wei, J. Liu, Y. Liu, Expression and clinical significance of CD147 in renal cell carcinoma: a meta-analysis.Oncotarget 8, 51331–51344 (2017)

  40. H. Li, C. Jiang, D. Wu, S. Shi, M. Liao, J. Wang, Y. Li, Z. Xu, The prognostic and clinicopathologic characteristics of CD147 and esophagus cancer: a meta-analysis. PLoS One 12, e0180271 (2017)

    PubMed  PubMed Central  Google Scholar 

  41. Y. Zhao, J. Yi, L. Tao, G. Huang, X. Chu, H. Song, L. Chen, Wnt signaling induces radioresistance through upregulating HMGB1 in esophageal squamous cell carcinoma. Cell Death Dis. 9, 433 (2018)

    PubMed  PubMed Central  Google Scholar 

  42. H. Ma, S. Zheng, X. Zhang, T. Gong, X. Lv, S. Fu, S. Zhang, X. Yin, J. Hao, C. Shan, S. Huang, High mobility group box 1 promotes radioresistance in esophageal squamous cell carcinoma cell lines by modulating autophagy. Cell Death Dis. 10, 136 (2019)

    PubMed  PubMed Central  Google Scholar 

  43. C.F. Tu, M.Y. Wu, Y.C. Lin, R. Kannagi, R.B. Yang, FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Breast Cancer Res. 19, 111 (2017)

    PubMed  PubMed Central  Google Scholar 

  44. L. Cheng, S. Gao, X. Song, W. Dong, H. Zhou, L. Zhao, L. Jia, Comprehensive N-glycan profiles of hepatocellular carcinoma reveal association of fucosylation with tumor progression and regulation of FUT8 by microRNAs. Oncotarget 7, 61199–61214 (2016)

    PubMed  PubMed Central  Google Scholar 

  45. Y. Ito, A. Miyauchi, H. Yoshida, T. Uruno, K. Nakano, Y. Takamura, A. Miya, K. Kobayashi, T. Yokozawa, F. Matsuzuka, N. Taniguchi, N. Matsuura, K. Kuma, E. Miyoshi, Expression of α1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett. 200, 167–172 (2003)

    CAS  PubMed  Google Scholar 

  46. C. Li, S. Zhu, C. Ma, L.X. Wang, Designer α1,6-fucosidase mutants enable direct core fucosylation of intact N-Glycopeptides and N-Glycoproteins. J. Am. Chem. Soc. 139, 15074–15087 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. X. Lv, J. Song, K. Xue, Z. Li, M. Li, D. Zahid, H. Cao, L. Wang, W. Song, T. Ma, J. Gu, W. Li, Core fucosylation of copper transporter 1 plays a crucial role in cisplatin-resistance of epithelial ovarian cancer by regulating drug uptake. Mol. Carcinog. 58, 794–807 (2019)

    CAS  PubMed  Google Scholar 

  48. Y. Bai, W. Huang, L.T. Ma, J.L. Jiang, Z.N. Chen, Importance of N-glycosylation on CD147 for its biological functions. Int. J. Mol. Sci. 15, 6356–6377 (2014)

    PubMed  PubMed Central  Google Scholar 

  49. J. Cui, W. Huang, B. Wu, J. Jin, L. Jing, W.P. Shi , Z.Y. Liu, L. Yuan, D. Luo, L. Li, Z.N. Chen, J.L. Jiang, N-glycosylation by N-acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis. J. Pathol. 245, 41–52 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. W. Huang, W.J. Luo, P. Zhu, J. Tang, X.L. Yu, H.Y. Cui, B. Wang, Y. Zhang, J.L. Jiang, Z.N. Chen, Modulation of CD147-induced matrix metalloproteinase activity: role of CD147 N-glycosylation. Biochem. J. 449, 437–448 (2013)

    CAS  PubMed  Google Scholar 

  51. L. Li, X. Dong, F. Peng, L. Shen, Integrin β1 regulates the invasion and radioresistance of laryngeal cancer cells by targeting CD147. Cancer Cell Int. 18, 80 (2018)

    PubMed  PubMed Central  Google Scholar 

  52. J. Wu, Y. Li, Y.Z. Dang, H.X. Gao, J.L. Jiang, Z.N. Chen, HAb18G/CD147 promotes radioresistance in hepatocellular carcinoma cells: a potential role for integrin β1 signaling. Mol. Cancer Ther. 14, 553–563 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank American Journal Experts (AJE) for English language editing.

Funding

This study was funded by the National Natural Science Foundation of China (NO. 81502666, NO. 81902494), the Natural Science Foundation of Hubei Province (NO.2019CFA034, NO. 2019CFB441), the Initial Project for Post-Graduates of the Hubei University of Medicine (NO.2016QDJZR10), the Free Exploration Foundation of the Hubei University of Medicine (NO.FDFR201802), and the Innovation Project for graduates of the Hubei University of Medicine (NO. YC2019007).

Author information

Authors and Affiliations

Authors

Contributions

Li Shen and Min Xia designed the study and performed the experiments. Xinzhou Deng, Qing Ke, Chuanyi Zhang and Feng Peng collected and analysed the data. Xiaoxia Dong and Zhiguo Luo prepared the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoxia Dong or Zhiguo Luo.

Ethics declarations

Informed consent was obtained from all patients enrolled in the present study. This study was approved by the Ethics Committee of the Hubei University of Medicine (Hubei, China). All animal experiments were performed according to protocols approved by the Committee on Animal Welfare of the Hubei University of Medicine.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(XLS 35 kb)

Table S2

(DOC 29 kb)

Table S3

(XLS 12986 kb)

Table S4

(XLS 1323 kb)

Table S5

(XLS 3619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Xia, M., Deng, X. et al. A lectin-based glycomic approach identifies FUT8 as a driver of radioresistance in oesophageal squamous cell carcinoma. Cell Oncol. 43, 695–707 (2020). https://doi.org/10.1007/s13402-020-00517-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00517-5

Keywords

Navigation