Skip to main content

Advertisement

Log in

Dp44mT, an iron chelator, suppresses growth and induces apoptosis via RORA-mediated NDRG2-IL6/JAK2/STAT3 signaling in glioma

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

The iron-chelating agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) has been found to inhibit cell growth and to induce apoptosis in several human cancers. However, its effects and mechanism of action in glioma are unknown.

Methods

Human glioma cell line LN229 and patient-derived glioma stem cells GSC-42 were applied for both in vitro and in vivo xenograft nude mouse experiments. The anti-tumor effects of Dp44mT were assessed using MTS, EdU, TUNEL, Western blotting, qRT-PCR, luciferase reporter, chromatin immunoprecipitation and immunohistochemical assays.

Results

We found that Dp44mT can upregulate the expression of the anti-oncogene N-myc downstream-regulated gene (NDRG)2 by directly binding to and activating the RAR-related orphan receptor (ROR)A. In addition, we found that NDRG2 overexpression suppressed inflammation via activation of interleukin (IL)-6/Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling.

Conclusions

Our data indicate that Dp44mT may serve as an effective drug for the treatment of glioma by targeting RORA and enhancing NDRG2-mediated IL-6/JAK2/STAT3 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 131, 803–820 (2016)

    PubMed  Google Scholar 

  2. N.R. Parker, P. Khong, J.F. Parkinson, V.M. Howell, H.R. Wheeler, Molecular heterogeneity in glioblastoma: potential clinical implications. Front. Oncol. 5, 55 (2015)

    PubMed  PubMed Central  Google Scholar 

  3. Moreno M, Pedrosa L, Pare L, Pineda E, Bejarano L, Martinez J, Balasubramaniyan V, Ezhilarasan R, Kallarackal N, Kim SH, Wang J, Audia A, Conroy S, Marin M, Ribalta T, Pujol T, Herreros A, Tortosa A, Mira H, Alonso MM, Gomez-Manzano C, Graus F, Sulman EP, Piao X, Nakano I, Prat A et al. GPR56/ADGRG1 inhibits mesenchymal differentiation and radioresistance in glioblastoma. Cell. Rep. 21, 2183–2197 (2017)

    CAS  PubMed  Google Scholar 

  4. L. Lin, J. Cai, C. Jiang, Recent advances in targeted therapy for glioma. Curr. Med. Chem. 24, 1365–1381 (2017)

    CAS  PubMed  Google Scholar 

  5. M. Jansen, S. Yip, D.N. Louis, Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol. 9, 717–726 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. D.S. Kalinowski, D.R. Richardson, The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev. 57, 547–583 (2005)

    CAS  PubMed  Google Scholar 

  7. P.J. Jansson, T. Yamagishi, A. Arvind, N. Seebacher, E. Gutierrez, A. Stacy, S. Maleki, D. Sharp, S. Sahni, D.R. Richardson, Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp). J. Biol. Chem. 290, 9588–9603 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. J.C. Lee, K.C. Chiang, T.H. Feng, Y.J. Chen, S.T. Chuang, K.H. Tsui, L.C. Chung, H.H. Juang, The iron chelator, Dp44mT, effectively inhibits human oral squamous cell carcinoma cell growth in vitro and in vivo. Int. J. Mol. Sci. 17, 1435 (2016)

    PubMed Central  Google Scholar 

  9. V.A. Rao, S.R. Klein, K.K. Agama, E. Toyoda, N. Adachi, Y. Pommier, E.B. Shacter, The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIalpha in breast cancer cells. Cancer Res. 69, 948–957 (2009)

    CAS  PubMed  Google Scholar 

  10. D.B. Lovejoy, D.M. Sharp, N. Seebacher, P. Obeidy, T. Prichard, C. Stefani, M.T. Basha, P.C. Sharpe, P.J. Jansson, D.S. Kalinowski, P.V. Bernhardt, D.R. Richardson, Novel second-generation di-2-pyridylketone thiosemicarbazones show synergism with standard chemotherapeutics and demonstrate potent activity against lung cancer xenografts after oral and intravenous administration in vivo. J. Med. Chem. 55, 7230–7244 (2012)

    CAS  PubMed  Google Scholar 

  11. S. Krishan, D.R. Richardson, S. Sahni, The anticancer agent, Di-2-Pyridylketone 4,4-Dimethyl-3-Thiosemicarbazone (Dp44mT), up-regulates the AMPK-dependent energy homeostasis pathway in cancer cells. Biochim. Biophys. Acta 1863, 2916–2933 (2016)

    CAS  PubMed  Google Scholar 

  12. Y. Yu, D.R. Richardson, Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1. J. Biol. Chem. 286, 15413–15427 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. K.M. Dixon, G.Y. Lui, Z. Kovacevic, D. Zhang, M. Yao, Z. Chen, Q. Dong, S.J. Assinder, D.R. Richardson, Dp44mT targets the AKT, TGF-beta and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer. 108, 409–419 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. F. Mirab, Y.J. Kang, S. Majd, Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells. PLoS One 14, e0211078 (2019)

  15. C.L. Yang, X.L. Zheng, K. Ye, H. Ge, Y.N. Sun, Y.F. Lu, Q.X. Fan, NDRG2 suppresses proliferation, migration, invasion and epithelial-mesenchymal transition of esophageal cancer cells through regulating the AKT/XIAP signaling pathway. Int. J. Biochem. Cell. Biol. 99, 43–51 (2018)

    CAS  PubMed  Google Scholar 

  16. L. Shen, X. Qu, H. Li, C. Xu, M. Wei, Q. Wang, Y. Ru, B. Liu, Y. Xu, K. Li, J. Hu, L. Wang, Y. Ma, M. Li, X. Lai, L. Gao, K. Wu, L. Yao, J. Zheng, J. Zhang, NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene 37, 1759–1774 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Sun, D. Zhang, Y. Zheng, Q. Zhao, M. Zheng, Z. Kovacevic, D.R. Richardson, Targeting the metastasis suppressor, NDRG1, using novel iron chelators: regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway. Mol. Pharmacol. 83, 454–469 (2013)

    CAS  PubMed  Google Scholar 

  18. B.A. Fang, Z. Kovacevic, K.C. Park, D.S. Kalinowski, P.J. Jansson, D.J. Lane, S. Sahni, D.R. Richardson, Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim. Biophys. Acta 1845, 1–19 (2014)

    CAS  PubMed  Google Scholar 

  19. S. Sahni, D.H. Bae, D.J. Lane, Z. Kovacevic, D.S. Kalinowski, P.J. Jansson, D.R. Richardson, The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. J. Biol. Chem. 289, 9692–9709 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Kim, K. Boo, Y.S. Yu, S.K. Oh, H. Kim, Y. Jeon, J. Bhin, D. Hwang, K.I. Kim, J.S. Lee, S.S. Im, S.G. Yoon, I.Y. Kim, J.K. Seong, H. Lee, S. Fang, S.H. Baek, RORalpha controls hepatic lipid homeostasis via negative regulation of PPARgamma transcriptional network. Nat. Commun. 8, 162 (2017)

    PubMed  PubMed Central  Google Scholar 

  21. G.K. Acquaah-Mensah, N. Agu, T. Khan, A. Gardner, A regulatory role for the insulin- and BDNF-linked RORA in the hippocampus: implications for Alzheimer’s disease. J. Alzheimer Dis. 44, 827–838 (2015)

    CAS  Google Scholar 

  22. X. Sun, S. Dongol, C. Qiu, Y. Xu, C. Sun, Z. Zhang, X. Yang, Q. Zhang, B. Kong, miR-652 promotes tumor proliferation and metastasis by targeting RORA in endometrial cancer. Mol. Cancer Res. 16, 1927–1939 (2018)

    CAS  PubMed  Google Scholar 

  23. Y. Yao, H. Ye, Z. Qi, L. Mo, Q. Yue, A. Baral, D.S.B. Hoon, J.C. Vera, J.D. Heiss, C.C. Chen, J. Zhang, K. Jin, Y. Wang, X. Zang, Y. Mao, L. Zhou, B7-H4(B7x)-mediated cross-talk between glioma-initiating cells and macrophages via the IL6/JAK/STAT3 pathway lead to poor prognosis in glioma patients. Clin. Cancer Res. 22, 2778–2790 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. A.M. Griesinger, R.J. Josephson, A.M. Donson, J.M. Mulcahy Levy, V. Amani, D.K. Birks, L.M. Hoffman, S.L. Furtek, P. Reigan, M.H. Handler, R. Vibhakar, N.K. Foreman, Interleukin-6/STAT3 pathway signaling drives an inflammatory phenotype in group A ependymoma. Cancer Immunol. Res. 3, 1165–1174 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Y. Jiang, S. Han, W. Cheng, Z. Wang, A. Wu, NFAT1-regulated IL6 signalling contributes to aggressive phenotypes of glioma. Cell. Commun. Signal. 15, 54 (2017)

    PubMed  PubMed Central  Google Scholar 

  26. K. Zhang, S. Che, C. Pan, Z. Su, S. Zheng, S. Yang, H. Zhang, W. Li, W. Wang, J. Liu, The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway. J. Cell. Mol. Med. 22, 3679–3690 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. E. Stanzani, F. Martinez-Soler, T.M. Mateos, N. Vidal, A. Villanueva, M.A. Pujana, J. Serra-Musach, N. de la Iglesia, P. Gimenez-Bonafe, A. Tortosa, Radioresistance of mesenchymal glioblastoma initiating cells correlates with patient outcome and is associated with activation of inflammatory program. Oncotarget 8, 73640–73653 (2017)

    PubMed  PubMed Central  Google Scholar 

  28. N.D. Giladi, A. Ziv-Av, H.K. Lee, S. Finniss, S. Cazacu, C. Xiang, H. Waldman Ben-Asher, A. deCarvalho, T. Mikkelsen, L. Poisson, C. Brodie, RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop. Oncotarget 6, 22680–22697 (2015)

    PubMed  PubMed Central  Google Scholar 

  29. G.Y. Lui, Z. Kovacevic, V.M. S, D.S. Kalinowski, A.M. Merlot, S. Sahni, D.R. Richardson, Novel thiosemicarbazones regulate the signal transducer and activator of transcription 3 (STAT3) pathway: inhibition of constitutive and interleukin 6-induced activation by iron depletion. Mol. Pharmacol. 87, 543–560 (2015)

    PubMed  Google Scholar 

  30. J. Wang, D. Yin, C. Xie, T. Zheng, Y. Liang, X. Hong, Z. Lu, X. Song, R. Song, H. Yang, B. Sun, N. Bhatta, X. Meng, S. Pan, H. Jiang, L. Liu, The iron chelator Dp44mT inhibits hepatocellular carcinoma metastasis via N-Myc downstream-regulated gene 2 (NDRG2)/gp130/STAT3 pathway. Oncotarget 5, 8478–8491 (2014)

    PubMed  PubMed Central  Google Scholar 

  31. Y. Jiang, J. Zhou, P. Luo, H. Gao, Y. Ma, Y.-S. Chen, L. Li, D. Zou, Y. Zhang, Z. Jing, Prosaposin promotes the proliferation and tumorigenesis of glioma through toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway. EBioMedicine 37, 78–90 (2018)

    PubMed  PubMed Central  Google Scholar 

  32. S.E. Logue, E.P. McGrath, P. Cleary, S. Greene, K. Mnich, A. Almanza, E. Chevet, R.M. Dwyer, A. Oommen, P. Legembre, F. Godey, E.C. Madden, B. Leuzzi, J. Obacz, Q. Zeng, J.B. Patterson, R. Jager, A.M. Gorman, A. Samali, Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat. Commun. 9, 3267 (2018)

    PubMed  PubMed Central  Google Scholar 

  33. Y. Jiang, Y. Song, R. Wang, T. Hu, D. Zhang, Z. Wang, X. Tie, M. Wang, S. Han, NFAT1-mediated regulation of NDEL1 promotes growth and invasion of glioma stem-like ells. Cancer Res. 79, 2593–2603 (2019)

    CAS  PubMed  Google Scholar 

  34. S. Han, C. Zhang, Q. Li, J. Dong, Y. Liu, Y. Huang, T. Jiang, A. Wu, Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br. J. Cancer. 110, 2560–2568 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Parasuraman, Protein data bank. J. Pharmacol. Pharmacother. 3, 351–352 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Hwang, Y. Kim, H.B. Kang, L. Jaroszewski, A.M. Deacon, H. Lee, W.C. Choi, K.J. Kim, C.H. Kim, B.S. Kang, J.O. Lee, T.K. Oh, J.W. Kim, I.A. Wilson, M.H. Kim, Crystal structure of the human N-Myc downstream-regulated gene 2 protein provides insight into its role as a tumor suppressor. J. Biol. Chem. 286, 12450–12460 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004)

    CAS  PubMed  Google Scholar 

  38. E. Nie, F. Miao, X. Jin, W. Wu, X. Zhou, A. Zeng, T. Yu, T. Zhi, Z. Shi, Y. Wang, J. Zhang, N. Liu, Y. You, Fstl1/DIP2A/MGMT signaling pathway plays important roles in temozolomide resistance in glioblastoma. Oncogene 38, 2706–2721 (2019)

    CAS  PubMed  Google Scholar 

  39. W. Cheng, M. Li, J. Cai, K. Wang, C. Zhang, Z. Bao, Y. Liu, A. Wu, HDAC4, a prognostic and chromosomal instability marker, refines the predictive value of MGMT promoter methylation. J. Neurooncol. 122, 303–312 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. X. Ge, M.H. Pan, L. Wang, W. Li, C. Jiang, J. He, K. Abouzid, L.Z. Liu, Z. Shi, B.H. Jiang, Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 9, 1128 (2018)

    PubMed  PubMed Central  Google Scholar 

  41. Y. Iwadate, Plasticity in glioma stem cell phenotype and its therapeutic implication. Neurol. Med. Chir. (Tokyo) 58, 61–70 (2018)

  42. B. Han, R. Wang, Y. Chen, X. Meng, P. Wu, Z. Li, C. Duan, Q. Li, Y. Li, S. Zhao, C. Jiang, J. Cai, QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway. Cell. Oncol. 42, 801–813 (2019)

    Google Scholar 

  43. M. De Bortoli, E. Taverna, E. Maffioli, P. Casalini, F. Crisafi, V. Kumar, C. Caccia, D. Polli, G. Tedeschi, I. Bongarzone, Lipid accumulation in human breast cancer cells injured by iron depletors. J. Exp. Clin. Cancer Res. 37, 75 (2018)

    PubMed  PubMed Central  Google Scholar 

  44. E. Gutierrez, D.R. Richardson, P.J. Jansson, The anticancer agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms: persistent induction of autophagosome synthesis and impairment of lysosomal integrity. J. Biol. Chem. 289, 33568–33589 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Z. Chen, D. Zhang, F. Yue, M. Zheng, Z. Kovacevic, D.R. Richardson, The iron chelators Dp44mT and DFO inhibit TGF-beta-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J. Biol. Chem. 287, 17016–17028 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. X. Wangpu, J. Lu, R. Xi, F. Yue, S. Sahni, K.C. Park, S. Menezes, M.L. Huang, M. Zheng, Z. Kovacevic, D.R. Richardson, Targeting the metastasis suppressor, N-Myc downstream regulated gene-1, with novel Di-2-pyridylketone thiosemicarbazones: Suppression of tumor cell migration and cell-collagen adhesion by inhibiting focal adhesion kinase/paxillin signaling. Mol. Pharmacol. 89, 521–540 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Y. Jia, X. Wang, D. Hu, P. Wang, Q. Liu, X. Zhang, J. Jiang, X. Liu, Z. Sheng, B. Liu, H. Zheng, Phototheranostics: Active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles. ACS Nano 13, 386–398 (2019)

    CAS  PubMed  Google Scholar 

  48. Y.J. Kang, C.F. Kuo, S. Majd, Nanoparticle-based delivery of an anti-proliferative metal chelator to tumor cells. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 309–312 (2017)

  49. S. Brocke, A. Degen, A.D. MacKerell, B. Dutagaci, M. Feig, Prediction of membrane permeation of drug molecules by combining an implicit membrane model with machine learning. J. Chem. Inf. Model. 59, 1147–1162 (2019)

    CAS  PubMed  Google Scholar 

  50. P. Arranz-Gibert, B. Guixer, M. Malakoutikhah, M. Muttenthaler, F. Guzman, M. Teixido, E. Giralt, Lipid bilayer crossing–the gate of symmetry. Water-soluble phenylproline-based blood-brain barrier shuttles. J. Am. Chem. Soc. 137, 7357–7364 (2015)

    CAS  PubMed  Google Scholar 

  51. Y.J. Kang, A. Madhankumar, J. Connor and S. Majd, Targeted nanoparticle delivery of a highly toxic metal chelator to brain tumors. Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. (2016). doi:https://doi.org/10.3389/conf.FBIOE.2016.01.00297

  52. Z. Kovacevic, S.V. Menezes, S. Sahni, D.S. Kalinowski, D.H. Bae, D.J. Lane, D.R. Richardson, The metastasis suppressor, N-MYC downstream-regulated gene-1 (NDRG1), down-regulates the ErbB family of receptors to inhibit downstream oncogenic signaling pathways. J. Biol. Chem. 291, 1029–1052 (2016)

    CAS  PubMed  Google Scholar 

  53. T. Tamura, T. Ichikawa, S. Nakahata, Y. Kondo, Y. Tagawa, K. Yamamoto, K. Nagai, T. Baba, R. Yamaguchi, M. Futakuchi, Y. Yamashita, K. Morishita, Loss of NDRG2 expression confers oral squamous cell carcinoma with enhanced metastatic potential. Cancer Res. 77, 2363–2374 (2017)

    CAS  PubMed  Google Scholar 

  54. S.Y. Nam, N.R. Han, K.W. Yoon, H.M. Kim, H.J. Jeong, Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), an anticancer agent, exerts an anti-inflammatory effect in activated human mast cells. Inflamm. Res. 66, 871–879 (2017)

    CAS  PubMed  Google Scholar 

  55. H.Y. Kim, N.R. Han, H.M. Kim, H.J. Jeong, The iron chelator and anticancer agent Dp44mT relieves allergic inflammation in mice with allergic rhinitis. Inflammation. 41, 1744–1754 (2018)

    CAS  PubMed  Google Scholar 

  56. Z.L. Guo, D.R. Richardson, D.S. Kalinowski, Z. Kovacevic, K.C. Tan-Un, G.C. Chan, The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J. Hematol. Oncol. 9, 98 (2016)

  57. M. Takarada-Iemata, A. Yoshikawa, H.M. Ta, N. Okitani, T. Nishiuchi, Y. Aida, T. Kamide, T. Hattori, H. Ishii, T. Tamatani, T.M. Le, J. Roboon, Y. Kitao, T. Matsuyama, M. Nakada, O. Hori, N-myc downstream-regulated gene 2 protects blood-brain barrier integrity following cerebral ischemia. Glia 66, 1432–1446 (2018)

    PubMed  Google Scholar 

  58. M. Takarada-Iemata, D. Kezuka, T. Takeichi, M. Ikawa, T. Hattori, Y. Kitao, O. Hori, Deletion of N-myc downstream-regulated gene 2 attenuates reactive astrogliosis and inflammatory response in a mouse model of cortical stab injury. J. Neurochem. 130, 374–387 (2014)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81101917, 81270036, 30901736), the Plan to Focus on Research and Development from Science and Technology project of Liaoning Province (No. 2017225029), the Natural Science Foundation of Liaoning Province (No. 20170541022), the Liaoning BaiQianWan Talents Program (No. 2019-B45), the Science and Technology Plan Project of Shenyang City (No. 18-014-4-11), the Fund for Scientific Research of The First Hospital of China Medical University (No. FHCMU- FSR) and the Shanghai Sailing Program (No. 19YF1439000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Jing.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the ethics committee of the First Affiliated Hospital of China Medical University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

Dp44mT upregulates NDRG2 expression via RORA. A, B: qPCR showed the mRNA expression of NDRG1 (A) and NDRG2 (B) after Dp44mT treatment. C: Western blot showed the protein expression of NDRG1 and NDRG2 after Dp44mT treatment. D, E: qPCR showed the mRNA expression of RORA after knockdown (D) or overexpression (E). F, G: Western blot (F) and qPCR (G) showed the expression of NDRG2 after RORA knockdown. H, I: qPCR (H) and western blot (I) showed the expression of NDRG2 after RORA overexpression. All data are shown as the mean ± S.D. (three independent experiments). *P, 0.05; **P, 0.01; ***P, 0.001. (PNG 5523 kb)

High resolution image (TIF 1388 kb)

Supplementary Fig. 2

NDRG2 participates in the Dp44mT induced glioma suppression. A, B: Lentiviral based NDRG2-siRNA1, NDRG2-siRNA2 or siRNA-control were transfected into LN229 and GSC42 and the knockdown effects were detected by western blot (A) and qPCR (B). C, D: MTS (C) and EdU (D) assay showed the proliferation inhibiting effects of Dp44mT were blocked after NDRG2 knockdown. Scale bar = 100 μm. E: Neurosphere formation assay showed the self-renew capacity of GSC42 was reversed after NDRG2 knockdown during the treatment of Dp44mT. Scale bar = 20 μm. F: TUNEL assay showed the promoting apoptosis effects of Dp44mT were blocked after NDRG2 knockdown. Scale bar = 100 μm. All data are shown as the mean ± S.D. (three independent experiments). *P, 0.05; **P, 0.01; ***P, 0.001. (PNG 18394 kb)

High resolution image (TIF 5067 kb)

Supplementary Fig. 3

Dp44mT and NDRG2 participate in the regulation of IL6/JAK2/STAT3 signaling pathway. A. B: Western blot showed the downstream changes of the IL6/JAK2/STAT3 signaling pathway in LN229 and GSC42 under NDRG2 overexpression (A) or knockdown (B). C: Western blot showed the downstream changes of the IL6/JAK2/STAT3 signaling pathway in LN229 and GSC42 was activated after NDRG2 knockdown although the continuous treatment of Dp44mT. D, E: ELISA showed the secretion changes of IL1β, IL6, IL8 and IL10 in LN229 and GSC42 under NDRG2 overexpression (D) or knockdown (E). F: ELISA showed the secretion changes of IL1β, IL6, IL8 and IL10 in LN229 and GSC42 was upregulated after NDRG2 knockdown although the continuous treatment of Dp44mT. All data are shown as the mean ± S.D. (three independent experiments). *P, 0.05; **P, 0.01; ***P, 0.001. (PNG 6748 kb)

High resolution image (TIF 1576 kb)

Supplementary Fig. 4

Additional IL6 treatment can reverse the tumor suppression effects of NDRG2 overexpression. A, B: MTS (A) and EdU (B) assay showed the proliferation inhibiting effects of NDRG2 overexpression were blocked after IL6 treatment. Scale bar = 100 μm. C: Neurosphere formation assay showed the self-renew capacity of NDRG2 overexpressed GSC42 was reversed by additional IL6 treatment. Scale bar = 20 μm. D: TUNEL assay showed the promoting apoptosis effects of NDRG2 overexpression were blocked after IL6 treatment. Scale bar = 100 μm. E: Western blot showed the expression changes of the apoptosis related markers under NDRG2 overexpression were blocked after IL6 treatment. All data are shown as the mean ± S.D. (three independent experiments). *P, 0.05; **P, 0.01; ***P, 0.001. (PNG 10117 kb)

High resolution image (TIF 2115 kb)

Supplementary Fig. 5

Additional anti-IL6 treatment can inhibit the tumor promotion effects of NDRG2 knockdown. A, B: MTS (A) and EdU (B) assay showed the proliferation promoting effects of NDRG2 knockdown were blocked after anti-IL6 treatment. Scale bar = 100 μm. C: Neurosphere formation assay showed the self-renew capacity of NDRG2 knockdown GSC42 was inhibited after anti-IL6 treatment. Scale bar = 20 μm. D: TUNEL showed the inhibiting apoptosis effects of NDRG2 knockdown were blocked after anti-IL6 treatment. Scale bar = 100 μm. E: Western blot showed the expression changes of the apoptosis related markers under NDRG2 knockdown were blocked after anti-IL6 treatment. All data are shown as the mean ± S.D. (three independent experiments). *P, 0.05; **P, 0.01; ***P, 0.001. (PNG 8592 kb)

High resolution image (TIF 3578 kb)

ESM 1

(DOCX 8028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Jiang, Y., Zhao, J. et al. Dp44mT, an iron chelator, suppresses growth and induces apoptosis via RORA-mediated NDRG2-IL6/JAK2/STAT3 signaling in glioma. Cell Oncol. 43, 461–475 (2020). https://doi.org/10.1007/s13402-020-00502-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00502-y

Keywords

Navigation