Skip to main content

Advertisement

Log in

The tumor suppressor FOXO3a mediates the response to EGFR inhibition in glioblastoma cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Although EGFR activation is a hallmark of glioblastoma (GBM), anti-EGFR therapy has so far not yielded the desired effects. Targeting PI3K/Akt has been proposed as a strategy to increase the cellular sensitivity to EGFR inhibitors. Here we evaluated the contribution of FOXO3a, a key Akt target, in the response of GBM cells to EGFR inhibition.

Methods

FOXO3a activation was assessed by immunofluorescence and gene reporter assays, and by evaluating target gene expression using Western blotting and qRT-PCR. Cellular effects were evaluated using cell viability and apoptosis assays, i.e., Annexin V/PI staining and caspase 3/7 activity measurements. Drug synergism was evaluated by performing isobolographic analyses. Gene silencing experiments were performed using stable shRNA transfections.

Results

We found that EGFR inhibition in GBM cells led to FOXO3a activation and to transcriptional modulation of its key targets, including repression of the oncogene FOXM1. In addition, we found that specific FOXO3a activation recapitulated the molecular effects of EGFR inhibition, and that the FOXO3a activator trifluoperazine, a FDA-approved antipsychotic agent, reduced GBM cell growth. Subsequent isobolographic analyses of combination experiments indicated that trifluoperazine and erlotinib cooperated synergistically and that their concomitant treatment induced a robust activation of FOXO3a, leading to apoptosis in GBM cells. Using gene silencing, we found that FOXO3a is essential for the response of GBM cells to EGFR inhibition.

Conclusions

Our data indicate that FOXO3a activation is a crucial event in the response of GBM cells to EGFR inhibition, suggesting that FOXO3a may serve as an actionable therapeutic target that can be modulated using FDA-approved drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.P. Dunn, M.L. Rinne, J. Wykosky, G. Genovese, S.N. Quayle, I.F. Dunn, P.K. Agarwalla, M.G. Chheda, B. Campos, A. Wang, C. Brennan, K.L. Ligon, F. Furnari, W.K. Cavenee, R.A. Depinho, L. Chin, W.C. Hahn, Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 26, 756–784 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Staberg, S.R. Michaelsen, R.D. Rasmussen, M. Villingshoj, H.S. Poulsen, P. Hamerlik, Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol 40, 21–32 (2017)

    Article  CAS  Google Scholar 

  3. D. Matias, J. Balca-Silva, L.G. Dubois, B. Pontes, V.P. Ferrer, L. Rosario, A. do Carmo, J. Echevarria-Lima, A.B. Sarmento-Ribeiro, M.C. Lopes, V. Moura-Neto, Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell Oncol 40, 247–261 (2017)

    Article  CAS  Google Scholar 

  4. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)

  5. T.F. Cloughesy, W.K. Cavenee, P.S. Mischel, Glioblastoma: From molecular pathology to targeted treatment. Annu Rev Pathol 9, 1–25 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. M.E. Halatsch, U. Schmidt, J. Behnke-Mursch, A. Unterberg, C.R. Wirtz, Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 32, 74–89 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. R. Nishikawa, X.D. Ji, R.C. Harmon, C.S. Lazar, G.N. Gill, W.K. Cavenee, H.J. Huang, A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A 91, 7727–7731 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. I.K. Mellinghoff, M.Y. Wang, I. Vivanco, D.A. Haas-Kogan, S. Zhu, E.Q. Dia, K.V. Lu, K. Yoshimoto, J.H. Huang, D.J. Chute, B.L. Riggs, S. Horvath, L.M. Liau, W.K. Cavenee, P.N. Rao, R. Beroukhim, T.C. Peck, J.C. Lee, W.R. Sellers, D. Stokoe, M. Prados, T.F. Cloughesy, C.L. Sawyers, P.S. Mischel, Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353, 2012–2024 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. E. Carrasco-Garcia, M. Saceda, S. Grasso, L. Rocamora-Reverte, M. Conde, A. Gomez-Martinez, P. Garcia-Morales, J.A. Ferragut, I. Martinez-Lacaci, Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines. Exp Cell Res 317, 1476–1489 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. G. Ramis, E. Thomas-Moya, S. Fernandez de Mattos, J. Rodriguez, P. Villalonga, EGFR inhibition in glioma cells modulates rho signaling to inhibit cell motility and invasion and cooperates with Temozolomide to reduce cell growth. PLoS One 7, e38770 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H.W. Lo, EGFR-targeted therapy in malignant glioma: Novel aspects and mechanisms of drug resistance. Curr Mol Pharmacol 3, 37–52 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. G. Karpel-Massler, C. R. Wirtz, M.E. Halatsch, Drug combinations enhancing the antineoplastic effects of erlotinib in high-grade glioma. Recent Pat Anticancer Drug Discov 6, 384–394 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. Q.W. Fan, K.M. Specht, C. Zhang, D.D. Goldenberg, K.M. Shokat, W.A. Weiss, Combinatorial efficacy achieved through two-point blockade within a signaling pathway-a chemical genetic approach. Cancer Res 63, 8930–8938 (2003)

    CAS  PubMed  Google Scholar 

  14. M.Y. Wang, K.V. Lu, S. Zhu, E.Q. Dia, I. Vivanco, G.M. Shackleford, W.K. Cavenee, I.K. Mellinghoff, T.F. Cloughesy, C.L. Sawyers, P.S. Mischel, Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66, 7864–7869 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. Q.W. Fan, C.K. Cheng, T.P. Nicolaides, C.S. Hackett, Z.A. Knight, K.M. Shokat, W.A. Weiss, A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67, 7960–7965 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B.M. Burgering, A brief introduction to FOXOlogy. Oncogene 27, 2258–2262 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. E.W. Lam, R.E. Francis, M. Petkovic, FOXO transcription factors: Key regulators of cell fate. Biochem Soc Trans 34, 722–726 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. J. Shi, L. Zhang, A. Shen, J. Zhang, Y. Wang, Y. Zhao, L. Zou, Q. Ke, F. He, P. Wang, C. Cheng, G. Shi, Clinical and biological significance of forkhead class box O 3a expression in glioma: Mediation of glioma malignancy by transcriptional regulation of p27kip1. J Neuro-Oncol 98, 57–69 (2010)

    Article  CAS  Google Scholar 

  19. J.Y. Yang, M.C. Hung, A new fork for clinical application: Targeting forkhead transcription factors in cancer. Clin Cancer Res 15, 752–757 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T.C. Chou, P. Talalay, Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22, 27–55 (1984)

    Article  CAS  Google Scholar 

  21. M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45–e445 (2001)

  22. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  23. R.H. Medema, G.J. Kops, J.L. Bos, B.M. Burgering, AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. F. Zanella, A. Rosado, B. Garcia, A. Carnero, W. Link, Using multiplexed regulation of luciferase activity and GFP translocation to screen for FOXO modulators. BMC Cell Biol 10, 14 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Schmidt, S. Fernandez de Mattos, A. van der Horst, R. Klompmaker, G.J. Kops, E.W. Lam, B.M. Burgering, R.H. Medema, Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22, 7842–7852 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Essaghir, N. Dif, C.Y. Marbehant, P.J. Coffer, J.B. Demoulin, The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem 284, 10334–10342 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  27. U.B. McGovern, R.E. Francis, B. Peck, S.K. Guest, J. Wang, S.S. Myatt, J. Krol, J.M. Kwok, A. Polychronis, R.C. Coombes, E.W. Lam, Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 8, 582–591 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. L. Jiang, X.C. Cao, J.G. Cao, F. Liu, M.F. Quan, X.F. Sheng, K.Q. Ren, Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a. Oncol Lett 5, 1605–1610 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. T.R. Kau, F. Schroeder, S. Ramaswamy, C.L. Wojciechowski, J.J. Zhao, T.M. Roberts, J. Clardy, W.R. Sellers, P.A. Silver, A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 4, 463–476 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. S. Fernandez de Mattos, P. Villalonga, J. Clardy, E.W. Lam, FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol Cancer Ther 7, 3237–3246 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. A. Obrador-Hevia, M. Serra-Sitjar, J. Rodriguez, P. Villalonga, S. Fernandez de Mattos, The tumour suppressor FOXO3 is a key regulator of mantle cell lymphoma proliferation and survival. Br J Haematol 156, 334–345 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. E. Berry, J.L. Hardt, J. Clardy, J.R. Lurain, J.J. Kim, Induction of apoptosis in endometrial cancer cells by psammaplysene a involves FOXO1. Gynecol Oncol 112, 331–336 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. A.V. Hoekstra, E.C. Sefton, E. Berry, Z. Lu, J. Hardt, E. Marsh, P. Yin, J. Clardy, D. Chakravarti, S. Bulun, J.J. Kim, Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab 94, 1768–1774 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Sangodkar, N.S. Dhawan, H. Melville, V.J. Singh, E. Yuan, H. Rana, S. Izadmehr, C. Farrington, S. Mazhar, S. Katz, T. Albano, P. Arnovitz, R. Okrent, M. Ohlmeyer, M. Galsky, D. Burstein, D. Zhang, K. Politi, A. Difeo, G. Narla, Targeting the FOXO1/KLF6 axis regulates EGFR signaling and treatment response. J Clin Invest 122, 2637–2651 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Zona, L. Bella, M.J. Burton, G.N. de Moraes, E.W. Lam, FOXM1: An emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta 1839, 1316–1322 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Liu, B. Dai, S.H. Kang, K. Ban, F.J. Huang, F.F. Lang, K.D. Aldape, T.X. Xie, C.E. Pelloski, K. Xie, R. Sawaya, S. Huang, FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66, 3593–3602 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. B. Dai, S.H. Kang, W. Gong, M. Liu, K.D. Aldape, R. Sawaya, S. Huang, Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 26, 6212–6219 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Zhang, N. Zhang, B. Dai, M. Liu, R. Sawaya, K. Xie, S. Huang, FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 68, 8733–8742 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Lee, K.H. Kim, D.G. Kim, H.J. Cho, Y. Kim, J. Rheey, K. Shin, Y.J. Seo, Y.S. Choi, J.I. Lee, J. Lee, K.M. Joo, D.H. Nam, FoxM1 promotes Stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One 10, e0137703 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A.H. Gong, P. Wei, S. Zhang, J. Yao, Y. Yuan, A.D. Zhou, F.F. Lang, A.B. Heimberger, G. Rao, S. Huang, FoxM1 drives a feed-forward STAT3-activation signaling loop that promotes the self-renewal and Tumorigenicity of glioblastoma stem-like cells. Cancer Res 75, 2337–2348 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Joshi, Y. Banasavadi-Siddegowda, X. Mo, S.H. Kim, P. Mao, C. Kig, D. Nardini, R.W. Sobol, L.M. Chow, H.I. Kornblum, R. Waclaw, M. Beullens, I. Nakano, MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem Cells 31, 1051–1063 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. N. Zhang, X. Wu, L. Yang, F. Xiao, H. Zhang, A. Zhou, Z. Huang, S. Huang, FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51. Clin Cancer Res 18, 5961–5971 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. N. Zhang, P. Wei, A. Gong, W.T. Chiu, H.T. Lee, H. Colman, H. Huang, J. Xue, M. Liu, Y. Wang, R. Sawaya, K. Xie, W.K. Yung, R.H. Medema, X. He, S. Huang, FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell 20, 427–442 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K. Xu, H.K. Shu, Transcription factor interactions mediate EGF-dependent COX-2 expression. Mol Cancer Res : MCR 11, 875–886 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. J. Krol, R.E. Francis, A. Albergaria, A. Sunters, A. Polychronis, R.C. Coombes, E.W. Lam, The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther 6, 3169–3179 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. S. Fernandez de Mattos, A. Essafi, I. Soeiro, A.M. Pietersen, K.U. Birkenkamp, C.S. Edwards, A. Martino, B.H. Nelson, J.M. Francis, M.C. Jones, J.J. Brosens, P.J. Coffer, E.W. Lam, FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol 24, 10058–10071 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A. Sunters, S. Fernandez de Mattos, M. Stahl, J.J. Brosens, G. Zoumpoulidou, C.A. Saunders, P.J. Coffer, R.H. Medema, R.C. Coombes, E.W. Lam, FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278, 49795–49805 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. F. Zhao, E.W. Lam, Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance. Front Med 6, 376–380 (2012)

    Article  PubMed  Google Scholar 

  49. J.E. Allen, G. Krigsfeld, P.A. Mayes, L. Patel, D.T. Dicker, A.S. Patel, N.G. Dolloff, E. Messaris, K.A. Scata, W. Wang, J.Y. Zhou, G.S. Wu, W.S. El-Deiry, Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med 5, 171ra117 (2013)

    Article  CAS  Google Scholar 

  50. J. Sunayama, A. Sato, K. Matsuda, K. Tachibana, E. Watanabe, S. Seino, K. Suzuki, Y. Narita, S. Shibui, K. Sakurada, T. Kayama, A. Tomiyama, C. Kitanaka, FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity. Stem Cells 29, 1327–1337 (2011)

    CAS  PubMed  Google Scholar 

  51. Z. Qian, L. Ren, D. Wu, X. Yang, Z. Zhou, Q. Nie, G. Jiang, S. Xue, W. Weng, Y. Qiu, Y. Lin, Overexpression of FoxO3a is associated with glioblastoma progression and predicts poor patient prognosis. Int J Cancer 140, 2792–2804 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. F.C. Schroeder, T.R. Kau, P.A. Silver, J. Clardy, The psammaplysenes, specific inhibitors of FOXO1a nuclear export. J Nat Prod 68, 574–576 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. S.H. Curry, R.B. Stewart, P.K. Springer, J.E. Pope, Plasma-trifluoperazine concentrations during high dose therapy. Lancet 1, 395–396 (1981)

    Article  CAS  PubMed  Google Scholar 

  54. B.M. Cohen, J.F. Lipinski, C. Waternaux, A fixed dose study of the plasma concentration and clinical effects of thioridazine and its major metabolites. Psychopharmacology 97, 481–488 (1989)

    Article  CAS  PubMed  Google Scholar 

  55. I. Gil-Ad, B. Shtaif, Y. Levkovitz, M. Dayag, E. Zeldich, A. Weizman, Characterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell lines: Clinical relevance and possible application for brain-derived tumors. J Mol Neurosci : MN 22, 189–198 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. H.W. Cheng, Y.H. Liang, Y.L. Kuo, C.P. Chuu, C.Y. Lin, M.H. Lee, A.T. Wu, C.T. Yeh, E.I. Chen, J. Whang-Peng, C.L. Su, C.Y. Huang, Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis 6, e1753 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S.Y. Shin, K.S. Lee, Y.K. Choi, H.J. Lim, H.G. Lee, Y. Lim, Y.H. Lee, The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis 34, 2080–2089 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. J.K. Lee, D.H. Nam, J. Lee, Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges. Oncol Lett 11, 1281–1286 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. J. Colomer, A.A. Schmitt, E.J. Toone, A.R. Means, Identification and inhibitory properties of a novel ca(2+)/calmodulin antagonist. Biochemistry 49, 4244–4254 (2010)

    Article  CAS  PubMed  Google Scholar 

  60. F. Zanella, A. Rosado, B. Garcia, A. Carnero, W. Link, Chemical genetic analysis of FOXO nuclear-cytoplasmic shuttling by using image-based cell screening. Chembiochem 9, 2229–2237 (2008)

    Article  CAS  PubMed  Google Scholar 

  61. J. Li, S. Zhu, D. Kozono, K. Ng, D. Futalan, Y. Shen, J.C. Akers, T. Steed, D. Kushwaha, M. Schlabach, B.S. Carter, C.H. Kwon, F. Furnari, W. Cavenee, S. Elledge, C.C. Chen, Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 5, 882–893 (2014)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Joan Seoane (Institut de Recerca Hospital Vall d’Hebron, Barcelona), Hans Skovgaard (Rigshospitalet, Oslo) and Isabel Martínez-Lacaci (Hospital Universitario Virgen de la Arrixaca, Murcia) for the gift of human glioma cell lines, to Jon Clardy (Harvard University) for Psammaplysene A and to Eric W-F Lam (Imperial College London) and Wolfgang Link (CNIO, Madrid) for expression plasmids. We are also grateful to Roche for providing erlotinib hydrochloride. The Cancer Cell Biology Laboratory is supported by a Consolider Ingenio grant (CSD2010-00065, Ministerio de Economía y Competitividad, Spain, to G.R., R.V-P., S.FdM. and P.V.) and a grant from Junta de Balears-AECC (to G.R., S.FdM. and P.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priam Villalonga.

Ethics declarations

Informed consent

For tumor sample collection informed consent was obtained from all individual participants included in the study and the study was approved by the ethical committee (Comitè d’Ètica de la Investigació-Illes Balears, CEI-IB, Ref. N° 3198/16).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramis, G., Villalonga-Planells, R., Serra-Sitjar, M. et al. The tumor suppressor FOXO3a mediates the response to EGFR inhibition in glioblastoma cells. Cell Oncol. 42, 521–536 (2019). https://doi.org/10.1007/s13402-019-00443-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00443-1

Keywords

Navigation