Skip to main content
Log in

β-Catenin gene promoter hypermethylation by reactive oxygen species correlates with the migratory and invasive potentials of colon cancer cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

A Correction to this article was published on 07 August 2018

This article has been updated

Abstract

Purpose

Over half of the colon cancer patients suffer from cancer-related events, mainly metastasis. Loss of β-catenin activity has previously been found to facilitate cancer cell dissociation and migration. Here, we aimed to investigate whether epigenetic silencing of β-catenin induces human colon cancer cell migration and/or invasion.

Methods

HCT-116, Caco-2, HT-29 and SW620 cell migration and invasion capacities were assessed using scratch wound healing and Matrigel invasion assays, respectively. Confocal microscopy, qRT-PCR and Western blotting were performed to determine gene expression levels, whereas methylation-specific quantitative real-time PCR was used to assess the extent of β-catenin gene (CTNNB1) promoter methylation after treatment of the cells with TPA, hydrogen peroxide, 5-aza-2′-deoxycytidine and/or VAS2870.

Results

We found that treatment of HT-29 and Caco-2 cells (differentiated and low metastatic) with 12-O-tetradecanoyl phorbol-13-acetate (TPA; a tumor promoter) suppressed E-cadherin and β-catenin expression at both the mRNA and protein levels and, in addition, enhanced cell migration. Furthermore, we found that the CTNNB1 gene promoter methylation levels were higher in the more invasive HCT-116 and SW620 colon cancer cells than in HT-29 and CCD-841 (normal colon epithelial) cells. We also found that TPA or hydrogen peroxide induced CTNNB1 gene promoter methylation to a higher extent in HT-29 and CCD-841 cells than in HCT-116 and SW620 cells, and that the degree of CTNNB1 gene promoter methylation positively correlated with cell dissociation and migration. In addition, we found that co-treatment with 5-aza-2′-deoxycytidine (decitabine, a DNA methyl transferase inhibitor) and VAS2870 (a NADPH oxidase inhibitor) almost completely blocked the invasion of TPA-treated HT-29 and TPA-untreated HCT-116 and SW620 cells, and that these inhibitions surpassed those of the cells treated with decitabine or VAS2870 alone.

Conclusions

From our data we conclude that the extent of CTNNB1 gene promoter methylation by reactive oxygen species correlates with the migratory and invasive abilities of colon cancer cells. Our results suggest that epigenetic regulation of CTNNB1 may serve as a novel avenue to block colon cancer cell migration and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 07 August 2018

    In the original version of above mentioned article an error occurred in Fig. 2. Panel g and panel h are included in the figure legend, but have not been published in the figure.

References

  1. M. Yilmaz, G. Christofori, Mechanisms of motility in metastasizing cells. Mol Can Res 8, 629–642 (2010)

    Article  CAS  Google Scholar 

  2. R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39, 397–410 (2016)

    Article  CAS  Google Scholar 

  3. S. Schmidt, P. Friedl, Interstitial cell migration: Integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 339, 83–92 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. P. Devreotes, A.R. Horwitz, Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol 7, a005959 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  5. L. Lobastova, D. Kraus, A. Glassmann, D. Khan, C. Steinhäuser, C. Wolff, N. Veit, J. Winter, R. Probstmeier, Collective cell migration of thyroid carcinoma cells: A beneficial ability to override unfavourable substrates. Cell Oncol 40, 63–76 (2017)

    Article  CAS  Google Scholar 

  6. W. Meng, M. Takeichi, Adherens junction: Molecular architecture and regulation. Cold Spring Harb Perspect Biol 1, a002899 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  7. W. Birchmeier, J. Hülsken, J. Behrens, Adherens junction proteins in tumour progression. Cancer Surv 24, 129–140 (1995)

    PubMed  CAS  Google Scholar 

  8. T.T. Onder, P.B. Gupta, S.A. Mani, J. Yang, E.S. Lander, R.A. Weinberg, Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68, 3645–3654 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. P.J. Morin, A.B. Sparks, V. Korinek, N. Barker, H. Clevers, B. Vogelstein, K.W. Kinzler, Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. V. Korinek, N. Barker, P.J. Morin, D. Van Wichen, R. De Weger, K.W. Kinzler, B. Vogelstein, H. Clevers, Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. T. Li, Q. Lai, S. Wang, J. Cai, Z. Xiao, D. Deng, L. He, H. Jiao, Y. Ye, L. Liang, MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer. J Exp Clin Cancer Res 35, 21 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. X. Tian, Z. Liu, B. Niu, J. Zhang, T.K. Tan, S.R. Lee, Y. Zhao, D.C.H. Harris and G. Zheng, E-cadherin/β-catenin complex and the epithelial barrier. Biomed Res Int 2011, 567305 (2011)

  13. D. Kimelman, W. Xu, β-Catenin destruction complex: Insights and questions from a structural perspective. Oncogene 25, 7482–7491 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. M.P.A. Ebert, J. Yu, J. Hoffmann, A. Rocco, C. Röcken, S. Kahmann, O. Müller, M. Korc, J.J. Sung, P. Malfertheiner, Loss of beta-catenin expression in metastatic gastric cancer. J Clin Oncol 21, 1708–1714 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Miao, L. Wang, X. Zhang, X. Xu, G. Jiang, C. Fan, Y. Liu, X. Lin, J. Yu, Y. Zhang, Promoter methylation-mediated silencing of β-catenin enhances invasiveness of non-small cell lung cancer and predicts adverse prognosis. PLoS One 9, e112258 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. F. Coppedè, Epigenetic biomarkers of colorectal cancer: Focus on DNA methylation. Cancer Lett 342, 238–247 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. J. Yuan, N.L. Luceño, B. Sander, M.M. Golas, Synergistic anti-cancer effects of epigenetic drugs on medulloblastoma cells. Cell Oncol 40, 263–279 (2017)

    Article  CAS  Google Scholar 

  18. M.S.G. Montani, M. Granato, C. Santoni, P. Del Porto, N. Merendino, G. D’Orazi, A. Faggioni, M. Cirone, Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells. Cell Oncol 40, 167–180 (2017)

    Article  CAS  Google Scholar 

  19. M. Staberg, S.R. Michaelsen, R.D. Rasmussen, M. Villingshøj, H.S. Poulsen, P. Hamerlik, Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol 40, 21–32 (2017)

    Article  CAS  Google Scholar 

  20. K. GrØnbÆk, C. Hother, P.A. Jones, Epigenetic changes in cancer. APMIS 115, 1039–1059 (2007)

    Article  PubMed  Google Scholar 

  21. P.M. Das, R. Singal, DNA methylation and cancer. J Clin Oncol 22, 4632–4642 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. P.A. Jones, S.B. Baylin, The epigenomics of cancer. Cell 128, 683–692 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S.H. Lin, J. Wang, P. Saintigny, C.-C. Wu, U. Giri, J. Zhang, T. Menju, L. Diao, L. Byers and J.N. Weinstein, Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial–mesenchymal transition. BMC Genomics 15, 1079 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Esteller, Epigenetics in cancer. N Engl J Med 2008, 1148–1159 (2008)

    Article  Google Scholar 

  25. D.C. Radisky, D.D. Levy, L.E. Littlepage, H. Liu, C.M. Nelson, J.E. Fata, D. Leake, E.L. Godden, D.G. Albertson, M.A. Nieto, Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Banskota, S.C. Regmi, J.A. Kim, NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7. Mol Cancer 14, 123 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Banskota, S.C. Regmi, J. Gautam, P. Gurung, Y.J. Lee, S.K. Ku, J.H. Lee, J. Lee, H.W. Chang, S.J. Park, J.A. Kim, Serotonin disturbs colon epithelial tolerance of commensal E. Coli by increasing NOX2-derived superoxide. Free Radic Biol Med 106, 196–207 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. K. Mori, M. Shibanuma, K. Nose, Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 64, 7464–7472 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Q. Wu, X. Ni, ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 16, 13–19 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. M. Esteller, CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. Oncogene 21, 5427–5440 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. R. Franco, O. Schoneveld, A.G. Georgakilas, M.I. Panayiotidis, Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266, 6–11 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. S.O. Lim, J.M. Gu, M.S. Kim, H.S. Kim, Y.N. Park, C.K. Park, J.W. Cho, Y.M. Park and G. Jung, Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: Methylation of the E-cadherin promoter. Gastroenterology 135, 2128–2140 (2008)

    Article  CAS  Google Scholar 

  33. T. Ikenoue, H. Ijichi, N. Kato, F. Kanai, T. Masaki, W. Rengifo, M. Okamoto, M. Matsumura, T. Kawabe, Y. Shiratori, Analysis of the β-catenin/T cell factor signaling pathway in 36 gastrointestinal and liver Cancer cells. Cancer Sci 93, 1213–1220 (2002)

    CAS  Google Scholar 

  34. M. Ilyas, I. Tomlinson, A. Rowan, M. Pignatelli, W. Bodmer, β-Catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A 94, 10330–10334 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. Ahmed, P. Eide, I. Eilertsen, S. Danielsen, M. Eknaes, M. Hektoen, G. Lind, R. Lothe, Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2, e71 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. B.C. Park, D. Thapa, Y.S. Lee, M.K. Kwak, E.S. Lee, H.G. Choi, C.S. Yong, J.A. Kim, 1-furan-2-yl-3-pyridin-2-yl-propenone inhibits the invasion and migration of HT1080 human fibrosarcoma cells through the inhibition of proMMP-2 activation and down regulation of MMP-9 and MT1-MMP. Eur J Pharmacol 567, 193–197 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. S.C. Regmi, S.Y. Park, S.K. Ku, J.A. Kim, Serotonin regulates innate immune responses of colon epithelial cells through Nox2-derived reactive oxygen species. Free Radic Biol Med 69, 377–389 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. O. Tetsu, F. McCormick, Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999)

    Article  CAS  PubMed  Google Scholar 

  39. T. Brabletz, A. Jung, S. Dag, F. Hlubek, T. Kirchner, β-Catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155, 1033–1038 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. B.P.L. Wijnhoven, W.N.M. Dinjens, M. Pignatelli, E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87, 992–1005 (2000)

    Article  CAS  PubMed  Google Scholar 

  41. J. Theys, B. Jutten, R. Habets, K. Paesmans, A.J. Groot, P. Lambin, B.G. Wouters, G. Lammering, M. Vooijs, E-cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol 99, 392–397 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Y. Wang, J. Shi, K. Chai, X. Ying, B.P. Zhou, The role of Snail in EMT and tumorigenesis. Curr Cancer Drug Targets 13, 963–972 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J.R. Graff, J.G. Herman, R.G. Lapidus, H. Chopra, R. Xu, D.F. Jarrard, W.B. Isaacs, P.M. Pitha, N.E. Davidson, S.B. Baylin, E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55, 5195–5199 (1995)

    PubMed  CAS  Google Scholar 

  44. A.O. Chan, S.K. Lam, B.C. Wong, W.M. Wong, M.F. Yuen, Y.H. Yeung, W.M. Hui, A. Rashid, Y.L. Kwong, Promoter methylation of E-cadherin gene in gastric mucosa associated with helicobacter pylori infection and in gastric cancer. Gut 52, 502–506 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S.Y. Shin, C.G. Kim, E.H. Jho, M.S. Rho, Y.S. Kim, Y.H. Kim, Y.H. Lee, Hydrogen peroxide negatively modulates Wnt signaling through downregulation of β-catenin. Cancer Lett 212, 225–231 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Science and ICT (grant no. NRF-2017R1E1A1A01073590), and by a Yeungnam University research grant (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Ae Kim.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

The original version of this article was revised: In the original version of the online published article figure 2 is incomplete. Panel g and panel h, as included in the figure legend, were not published in the figure. The correct version of figure 2 can be found in the revised article and erratum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banskota, S., Dahal, S., Kwon, E. et al. β-Catenin gene promoter hypermethylation by reactive oxygen species correlates with the migratory and invasive potentials of colon cancer cells. Cell Oncol. 41, 569–580 (2018). https://doi.org/10.1007/s13402-018-0391-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0391-7

Keywords

Navigation