Advertisement

Cellular Oncology

, Volume 41, Issue 5, pp 485–494 | Cite as

Targeting glucose transport and the NAD pathway in tumor cells with STF-31: a re-evaluation

  • Dominik Kraus
  • Jan Reckenbeil
  • Nadine Veit
  • Stefan Kuerpig
  • Michael Meisenheimer
  • Imke Beier
  • Helmut Stark
  • Jochen Winter
  • Rainer Probstmeier
Original Paper

Abstract

Background

Targeting glucose metabolism is a promising way to interfere with tumor cell proliferation and survival. However, controversy exists about the specificity of some glucose metabolism targeting anticancer drugs. Especially the potency of STF-31 has been debated. Here, we aimed to assess the impact of the glucose transporter (GLUT) inhibitors fasentin and WZB117, and the nicotinamide phosphoribosyltransferase (NAMPT) inhibitors GMX1778 and STF-31 on tumor cell proliferation and survival, as well as on glucose uptake.

Methods

Tumor-derived A172 (glioblastoma), BHY (oral squamous cell carcinoma), HeLa (cervix adenocarcinoma), HN (head neck cancer), HT-29 (colon carcinoma) and MG-63 (osteosarcoma) cells were treated with fasentin, WZB117, GMX1778 and STF-31. Proliferation rates and cell viabilities were assessed using XTT, crystal violet and LDH assays. mRNA and protein expression of GLUT1 and NAPRT were assessed using qPCR and Western blotting, respectively. The effects of inhibiting compounds on glucose uptake were measured using [18F]-fluoro-deoxyglucose uptake experiments.

Results

Stimulation of tumor-derived cells with the different inhibitors tested revealed a complex pattern, whereby proliferation inhibiting and survival reducing concentrations varied in [18F]-fluoro-deoxyglucose uptake experiments more than one order of magnitude among the different cells tested. We found that the effects of GMX1778 and STF-31 could be partially abolished by (i) nicotinic acid (NA) only in nicotinic acid phosphoribosyltransferase (NAPRT) expressing cells and (ii) nicotinamide mononucleotide (NMN) in all cells tested, supporting the classification of these compounds as NAMPT inhibitors. In short-time [18F]-fluoro-deoxyglucose uptake experiments the application of WZB-117 was found to lead to an almost complete uptake inhibition in all cells tested, whereas the effect of fasentin was found to be cell type dependent with a maximum value of ~35% in A172, BHY, HeLa and HT-29 cells. We also found that STF-31 inhibited glucose uptake in all cells tested in a range of 25–50%. These data support the classification of STF-31 as a GLUT inhibitor.

Conclusions

Our data reveal a dual mode of action of STF-31, serving either as a NAMPT or as a GLUT inhibitor, whereby the latter seems to be apparent only at higher STF-31 concentrations. The molecular basis of such a dual function and its appearance in compounds previously designated as NAMPT-specific inhibitors requires further investigation.

Keywords

Fasentin Glucose transporter GMX1778 NAMPT STF-31 WZB117 

Notes

Compliance with ethical standards

Conflict of interest

None declared.

References

  1. 1.
    N. Mjiya, A. Caro-Maldonado, S. Ramírez-Peinado, C. Muñoz-Pinedo, Sugar-free approaches to cancer cell killing. Oncogene 30, 253–264 (2011)CrossRefGoogle Scholar
  2. 2.
    M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    C. Granchi, D. Fancelli, F. Minutolo, An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg Med Chem Lett 24, 4915–4925 (2014)CrossRefPubMedGoogle Scholar
  4. 4.
    O. Warburg, On the origin of cancer cells. Science 123, 309–314 (1956)CrossRefPubMedGoogle Scholar
  5. 5.
    R. Moreno-Sánchez, S. Rodríguez-Enríquez, A. Marín-Hernández, E. Saavedra, Energy metabolism in tumor cells. FEBS J 274, 1393–1418 (2007)CrossRefPubMedGoogle Scholar
  6. 6.
    P. Danhier, P. Bański, V.L. Payen, D. Grasso, L. Ippolito, P. Sonveaux, P.E. Porporato, Cancer metabolism in space and time: Beyond the Warburg effect. Biochim Biophys Acta 1858, 556–572 (2017)CrossRefGoogle Scholar
  7. 7.
    P.E. Porporato, S. Dhup, R.K. Dadhich, T. Copetti, P. Sonveaux, Anticancer targets in the glycolytic metabolism of tumors: A comprehensive review. Front Pharmacol 2, 49 (2011)Google Scholar
  8. 8.
    F.Q. Zhao, A.F. Keating, Functional properties and genomics of glucose transporters. Curr Genomics 8, 113–128 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    P.O. Hassa, S.S. Haenni, M. Elser, M.O. Hottiger, Nuclear ADP-ribosylation reactions in mammalian cells: Where are we today and where are we going? Microbiol Mol Biol Rev 70, 789–829 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    G. Magni, A. Amici, M. Emanuelli, N. Raffaelli, S. Ruggieri, Enzymology of NAD+ synthesis. Adv Enzymol Relat Areas Mol Biol 73, 135–182 (1999)PubMedGoogle Scholar
  11. 11.
    A. Roulston, G.C. Shore, New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncology. Mol Cell Oncol 3, e1052180 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    D.A. Chan, P.D. Sutphin, P. Nguyen, S. Turcotte, E.W. Lai, A. Banh, G.E. Reynolds, J.T. Chi, J. Wu, D.E. Solow-Cordero, M. Bonnet, J.U. Flanagan, D.M. Bouley, E.E. Graves, W.A. Denny, M.P. Hay, A.J. Giaccia, Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3, 94ra70 (2011)PubMedPubMedCentralGoogle Scholar
  13. 13.
    D.J. Adams, D. Ito, M.G. Rees, B. Seashore-Ludlow, X. Puyang, A.H. Ramos, J.H: Cheah, P.A. Clemons, M. Warmuth, P. Zhu, A.F. Shamji, S.L. Schreiber, NAMPT is the cellular target of STF-31-like small-molecule probes. ACS Chem Biol 9, 2247–2254 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    E.M. Kropp, B.J. Oleson, K.A. Broniowska, S. Bhattacharya, A.C. Chadwick, A.R. Diers, Q. Hu, D.E. Sahoo, N. Hogg, K.R. Boheler, J.A. Corbett, R.L. Gundry, Inhibition of an NAD+ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. Stem Cells Transl Med 4, 483–493 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    K.R. Boheler, S. Bhattacharya, E.M. Kropp, S. Chuppa, D.R. Riordon, D. Bausch-Fluck, P.W. Burridge, J.C. Wu, R.P. Wersto, G.C. Chan, S. Rao, B. Wollscheid, R.L. Gundry, A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep 3, 185–203 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    T. Matsumoto, S. Jimi, K. Migita, Y. Takamatsu, S. Hara, Inhibition of glucose transporter 1 induces apoptosis and sensitizes multiple myeloma cells to conventional chemotherapeutic agents. Leuk Res 41, 103–110 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    C. Xintaropoulou, C. Ward, A. Wise, H. Marston, A. Turnbull, S.P. Langdon, A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 6, 25677–25695 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    D. Kraus, J. Reckenbeil, M. Wenghoefer, H. Stark, M. Frentzen, J.P. Allam, N. Novak, S. Frede, W. Götz, R. Probstmeier, R. Meyer, J. Winter, Ghrelin promotes oral tumor cell proliferation by modifying GLUT1 expression. Cell Mol Life Sci 73, 1287–1299 (2016)CrossRefPubMedGoogle Scholar
  19. 19.
    T. Murmann, C. Carrillo-García, N. Veit, C. Courts, A. Glassmann, V. Janzen, B. Madea, M. Reinartz, A. Harzen, M. Nowak, S. Perner, J. Winter, R. Probstmeier, Staurosporine and extracellular matrix proteins mediate the conversion of small cell lung carcinoma cells into a neuron-like phenotype. PLoS One 9, e86910 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    M.V. Berridge, P.M. Herst, A.S. Tan, Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol Annu Rev 11, 127–152 (2005)CrossRefPubMedGoogle Scholar
  21. 21.
    M. Watson, A. Roulston, L. Bélec, X. Billot, R. Marcellus, D. Bédar, C. Bernier, S. Branchaud, H. Chan, K. Dairi, K. Gilbert, D. Goulet, M.O. Gratton, H. Isakau, A. Jang, A. Khadir, E. Koch, M. Lavoie, M. Lawless, M. Nguyen, D. Paquette, E. Turcotte, A. Berger, M. Mitchell, G.C. Shore, P. Beauparlant, The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: Strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29, 5872–5888 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Y. Xiao, K. Elkins, J.K. Durieux, L. Lee, J. Oeh, L.X. Yang, X. Liang, C. DelNagro, J. Tremayne, M. Kwong, B.M. Liederer, P.K. Jackson, L.D. Belmont, D. Sampath, T. O'Brien, dependence of tumor cell lines and patient-derived tumors on the NAD salvage pathway renders them sensitive to NAMPT inhibition with GNE-618. Neoplasia 15, 1151–1160 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    F. Sahm, I. Oezen, C.A. Opitz, B. Radlwimmer, A. von Deimling, T. Ahrendt, S. Adams, H.B. Bode, G.J. Guillemin, W. Wick, M. Platten, The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res 73, 3225–3234 (2013)CrossRefPubMedGoogle Scholar
  24. 24.
    T. O'Brien, J. Oeh, Y. Xiao, X. Liang, A. Vanderbilt, A. Qin, L. Yang, L.B. Lee, J. Ly, E. Cosino, J.A. LaCap, A. Ogasawara, S. Williams, M. Nannini, B.M. Liederer, P. Jackson, P.S. Dragovich, D. Sampath, Supplementation of nicotinic acid with NAMPT inhibitors results in loss of in vivo efficacy in NAPRT1-deficient tumor models. Neoplasia 15, 1314–1329 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    D.J. Stewart, G.P. Raaphorst, J. Yau, A.R. Beaubien, Active vs. passive resistance, dose-response relationships, high dose chemotherapy, and resistance modulation: A hypothesis. Investig New Drugs 14, 115–130 (1996)Google Scholar
  26. 26.
    F.P. Guengerich, A.W. Munro, Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288, 17065–17073 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    J.R. Cashma, J. Zhang, Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46, 65–100 (2006)CrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  1. 1.Department of Prosthodontics, Preclinical Education, and Material SciencesUniversity of BonnBonnGermany
  2. 2.Neuro- and Tumor Cell Biology Group, Department of Nuclear MedicineUniversity of BonnBonnGermany
  3. 3.Department of Nuclear MedicineUniversity of BonnBonnGermany
  4. 4.Oral Cell Biology Group, Department of Periodontology, Operative and Preventive DentistryUniversity of BonnBonnGermany
  5. 5.Neuro- and Tumor Cell Biology Group, Department of Nuclear MedicineUniversity Hospital of BonnBonnGermany

Personalised recommendations